全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

结合降维技术的电力负荷曲线集成聚类算法

DOI: 10.13334/j.0258-8013.pcsee.2015.15.001, PP. 3741-3749

Keywords: 能源互联网,电力大数据,负荷曲线,聚类有效性,集成聚类算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

电力负荷曲线聚类是配用电大数据挖掘的基础。分析3种典型聚类有效性指标,指出Davies-Bouldin有效性指标更适用于评估负荷曲线的聚类结果。研究基于层次、基于划分、基于密度、基于模型等类型的聚类算法,从聚类效率和聚类质量两方面评价各种算法。层次聚类的质量较高,效率较低;划分聚类的效率较高,质量较低。针对单一聚类算法的不足,研究基于经典聚类算法的集成聚类算法并将其应用于负荷曲线聚类。该算法包括bootstrap重采样、划分聚类、层次聚类3步,对不同规模数据集的聚类结果表明集成算法具有更好的性能,特别适用于大规模数据集聚类。针对电力负荷曲线的特征,研究多种数据集降维算法,在降维后的数据集上进行集成聚类,比较各种降维算法的信息损失和计算效率。研究结果表明,对于大规模电力负荷曲线的聚类问题,结合主成分分析降维的集成聚类算法可以取得最佳效果。

References

[1]  中国电机工程学会信息化专委会.中国电力大数据发展白皮书(2013)[R].北京:中国电机工程学会,2013.Chinese society for electrical engineering informatization committee.Chinese electric power big data development white paper(2013)[R].Beijing:Chinese society for electrical engineering,2013(in Chinese).
[2]  宋亚奇,周国亮,朱永利.智能电网大数据处理技术现状与挑战[J].电网技术,2013,37(4):927-935.Song Yaqi,Zhou Guoliang,Zhu Yongli.Present status and challenges of big data processing in smart grid[J].Power System Technology,2013,37(4):927-935(in Chinese).
[3]  田世明,王蓓蓓,张晶.智能电网条件下的需求响应关键技术[J].中国电机工程学报,2014,34(22):3576-3589.Tian Shiming,Wang Beibei,Zhang Jing.Key technologies for demand response in smart grid[J].Proceedings of the CSEE,2014,34(22):3576-3589(in Chinese).
[4]  蒋雯倩,李欣然,钱军,等.改进FCM算法及其在电力负荷坏数据处理的应用[J].电力系统及其自动化学报,2011,23(5):1-5.Jiang Wenqian,Li Xinran,Qian Jun,et al.Application of improved FCM algorithm in outlier processing of power load[J].Proceedings of the CSU-EPSA,2011,23(5):1-5(in Chinese).
[5]  李翔,顾洁.运用聚类算法预测地区电网典型日负荷曲线[J].电力与能源,2013,35(1):47-50.Li Xiang,Gu Jie.Using the clustering algorithm forecast in the power grid typical daily load curve[J].Power & Energy,2013,35(1):47-50(in Chinese).
[6]  黄梅,贺仁睦,杨少兵.模糊聚类在负荷实测建模中的应用[J].电网技术,2006,30(14):49-52.Huang Mei,He Renmu,Yang Shaobing.Application of fuzzy clustering in measurement-based load modeling [J].Power System Technology,2006,30(14):49-52(in Chinese).
[7]  李欣然,姜学皎,钱军,等.基于用户日负荷曲线的用电行业分类与综合方法[J].电力系统自动化,2010,34(10):56-61.Li Xinran,Jiang Xuejiao,Qian Jun,et al.A classifying and synthesizing method of power consumer industry based on the daily load profile[J].Automation of Electric Power Systems,2010,34(10):56-61(in Chinese).
[8]  李培强,李欣然,陈辉华,等.基于模糊聚类的电力负荷特性的分类与综合[J].中国电机工程学报,2005,25(24):73-78.Li Peiqiang,Li Xinran,Chen Huihua,et al.The characteristic classification and synthesis power load based on fuzzy clustering[J].Proceedings of the CSEE,2005,25(24):73-78(in Chinese).
[9]  Chicco G,Napoli R,Piglione F.Comparisons among clustering techniques for electricity customer classification[J].IEEE Transactions on Power Systems,2006,21(2):933-940.
[10]  Pakhira M K,Bandyopadhyay S,Maulik U.Validity index for crisp and fuzzy clusters[J].Pattern Recognition,2004,37(3):487-501.
[11]  Milligan G,Cooper M.An examination of procedures for determining the number of clusters in a data set [J].Psychometrika,1985,50(2):159-179.
[12]  Kim M,Ramakrishna R S.New indices for cluster validity assessment[J].Pattern Recognition Letters,2005,26(15):2353-2363.
[13]  Davies D L,Bouldin D W.A cluster separation measure[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1979,1(2):224-227.
[14]  Kwac J,Flora J,Rajagopal R.Household energy consumption segmentation using hourly data[J].IEEE Transactions on Smart Grid,2014,5(1):420-430.
[15]  Rodriguez A,Laio A.Clustering by fast search and find of density peaks[J].Science,2014,344(6191):1492-1496.
[16]  Breiman L.Bagging predictors[J].Machine Learning,1996,24(2):123-140.
[17]  Leisch F,Bagged clustering.Working papers SFB adaptive information systems and modeling in economics and management science[R].Wien:Institut für Information,1999.
[18]  Dudoit S,Fridlyand J.Bagging to improve the accuracy of a clustering procedure[J].Bioinformatics,2003,19(9):1090-1099.
[19]  Sammon J W.A nonlinear mapping for data structure analysis[J].IEEE Transactions on Computers,1969,18(5):401-409.
[20]  De Backer S,Naud A,Scheunders P.Non-linear dimensionality reduction techniques for unsupervised feature extraction[J].Pattern Recognition Letters,1998,19(8):711-720.
[21]  Wold S,Esbensen K,Geladi P.Principal component analysis[J].Chemometrics and Intelligent Laboratory Systems,1987,2(1):37-52.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133