中国电机工程学会信息化专委会.中国电力大数据发展白皮书(2013)[R].北京:中国电机工程学会,2013.Chinese society for electrical engineering informatization committee.Chinese electric power big data development white paper(2013)[R].Beijing:Chinese society for electrical engineering,2013(in Chinese).
[2]
宋亚奇,周国亮,朱永利.智能电网大数据处理技术现状与挑战[J].电网技术,2013,37(4):927-935.Song Yaqi,Zhou Guoliang,Zhu Yongli.Present status and challenges of big data processing in smart grid[J].Power System Technology,2013,37(4):927-935(in Chinese).
[3]
田世明,王蓓蓓,张晶.智能电网条件下的需求响应关键技术[J].中国电机工程学报,2014,34(22):3576-3589.Tian Shiming,Wang Beibei,Zhang Jing.Key technologies for demand response in smart grid[J].Proceedings of the CSEE,2014,34(22):3576-3589(in Chinese).
[4]
蒋雯倩,李欣然,钱军,等.改进FCM算法及其在电力负荷坏数据处理的应用[J].电力系统及其自动化学报,2011,23(5):1-5.Jiang Wenqian,Li Xinran,Qian Jun,et al.Application of improved FCM algorithm in outlier processing of power load[J].Proceedings of the CSU-EPSA,2011,23(5):1-5(in Chinese).
[5]
李翔,顾洁.运用聚类算法预测地区电网典型日负荷曲线[J].电力与能源,2013,35(1):47-50.Li Xiang,Gu Jie.Using the clustering algorithm forecast in the power grid typical daily load curve[J].Power & Energy,2013,35(1):47-50(in Chinese).
[6]
黄梅,贺仁睦,杨少兵.模糊聚类在负荷实测建模中的应用[J].电网技术,2006,30(14):49-52.Huang Mei,He Renmu,Yang Shaobing.Application of fuzzy clustering in measurement-based load modeling [J].Power System Technology,2006,30(14):49-52(in Chinese).
[7]
李欣然,姜学皎,钱军,等.基于用户日负荷曲线的用电行业分类与综合方法[J].电力系统自动化,2010,34(10):56-61.Li Xinran,Jiang Xuejiao,Qian Jun,et al.A classifying and synthesizing method of power consumer industry based on the daily load profile[J].Automation of Electric Power Systems,2010,34(10):56-61(in Chinese).
[8]
李培强,李欣然,陈辉华,等.基于模糊聚类的电力负荷特性的分类与综合[J].中国电机工程学报,2005,25(24):73-78.Li Peiqiang,Li Xinran,Chen Huihua,et al.The characteristic classification and synthesis power load based on fuzzy clustering[J].Proceedings of the CSEE,2005,25(24):73-78(in Chinese).
[9]
Chicco G,Napoli R,Piglione F.Comparisons among clustering techniques for electricity customer classification[J].IEEE Transactions on Power Systems,2006,21(2):933-940.
[10]
Pakhira M K,Bandyopadhyay S,Maulik U.Validity index for crisp and fuzzy clusters[J].Pattern Recognition,2004,37(3):487-501.
[11]
Milligan G,Cooper M.An examination of procedures for determining the number of clusters in a data set [J].Psychometrika,1985,50(2):159-179.
[12]
Kim M,Ramakrishna R S.New indices for cluster validity assessment[J].Pattern Recognition Letters,2005,26(15):2353-2363.
[13]
Davies D L,Bouldin D W.A cluster separation measure[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1979,1(2):224-227.
[14]
Kwac J,Flora J,Rajagopal R.Household energy consumption segmentation using hourly data[J].IEEE Transactions on Smart Grid,2014,5(1):420-430.
[15]
Rodriguez A,Laio A.Clustering by fast search and find of density peaks[J].Science,2014,344(6191):1492-1496.
Leisch F,Bagged clustering.Working papers SFB adaptive information systems and modeling in economics and management science[R].Wien:Institut für Information,1999.
[18]
Dudoit S,Fridlyand J.Bagging to improve the accuracy of a clustering procedure[J].Bioinformatics,2003,19(9):1090-1099.
[19]
Sammon J W.A nonlinear mapping for data structure analysis[J].IEEE Transactions on Computers,1969,18(5):401-409.
[20]
De Backer S,Naud A,Scheunders P.Non-linear dimensionality reduction techniques for unsupervised feature extraction[J].Pattern Recognition Letters,1998,19(8):711-720.
[21]
Wold S,Esbensen K,Geladi P.Principal component analysis[J].Chemometrics and Intelligent Laboratory Systems,1987,2(1):37-52.