全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于变分模态分解和模糊C均值聚类的滚动轴承故障诊断

DOI: 10.13334/j.0258-8013.pcsee.2015.13.020, PP. 3358-3365

Keywords: 变分模态分解,特征提取,模糊聚类,滚动轴承,故障诊断

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了精准、稳定地提取滚动轴承故障特征,提出了基于变分模态分解和奇异值分解的特征提取方法,采用标准模糊C均值聚类(fuzzyCmeansclustering,FCM)进行故障识别。对同一负荷下的已知故障信号进行变分模态分解,利用奇异值分解技术进一步提取各模态特征,通过FCM形成标准聚类中心,采用海明贴近度对测试样本进行分类,并通过计算分类系数和平均模糊熵对分类性能进行评价,将该方法应用于滚动轴承变负荷故障诊断。通过与基于经验模态分解的特征提取方法对比,该方法对标准FCM初始化条件不敏感,在同负荷故障诊断中表现出更好的分类性能;变负荷故障诊断时,除外圈故障特征线发生明显迁移,其他测试样本故障特征线仍在原聚类中心附近,整体故障识别率保持在100%,因此,该方法能精确、稳定提取故障特征,为实际滚动轴承智能故障诊断提供参考。

References

[1]  Huang N E,Shen Z,Long S R,et al.A new view of nonlinear waves:the Hilbert spectrum[J].Annual Review of Fluid Mechanics,1999(3):417-457.
[2]  Yang Y,Cheng J S,Zhang K.An ensemble local means decomposition method and its application to local rub-impact fault diagnosis of the rotor systems [J].Measurement,2012(45):561-570.
[3]  Wu Z H,Huang N E.Ensemble empirical mode decomposition:a noise assisted data analysis method [J].Advances in Adaptive Data Analysis,2009,1(1):1-41.
[4]  杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):85-88.Yang Yue,Yu Dejie,Cheng Juncheng.Rolling bearing fault diagnosis method based on neural network [J].Journal of Vibration and Shock,2005,24(1):85-88(in Chinese).
[5]  周川,伍星,刘畅,等.基于EMD和模糊C均值聚类的滚动轴承故障诊断[J].昆明理工大学学报:理工版,2009,34(6):34-39.Zhou Chuan,Wu Xing,Liu Chang,et al.Rolling bearing fault diagnosis based on EMD and fuzzy C mean clustering[J].Journal of Kunming University of Science and Technology:Science and Technology,2009,34(6):34-39(in Chinese).
[6]  张玲玲,廖红云,曹亚娟,等.基于EEMD和模糊C均值聚类算法诊断发动机曲轴轴承故障[J].内燃机学报,2011,29(4):332-336.Zhang Lingling,liao Hongyun,Cao Yajuan.Diagnosis on crankshaft bearing fault based on EEMD and fuzzy C mean clustering arithmetic[J].Transaction on CSICE,2011,29(4):332-336(in Chinese).
[7]  康守强,王玉静,姜义成,等.基于超球球心间距多类支持向量机的滚动轴承故障分类[J].中国电机工程学报,2014,34(14):2319-2325.Kang Shouqiang,Wang Yujing,Jiang Yicheng,et al.Fault classification of rolling bearing based on hypersphere spherical center distance multiclass support vector machine[J].Proceedings of the CSEE,2014,34(14):2319-2325(in Chinese).
[8]  胡爱军,马万里,唐贵基.基于集成经验模态分解和峭度准则的滚动轴承故障特征提取方法[J].中国电机工程学报,2012,32(11):106-111.Hu Aijun,Ma Wanli,Tang Guiji.Rolling bearing fault feature extraction method based on ensemble empirical mode decomposition and kurtosis criterion[J].Proceedings of the CSEE,2012,32(11):106-111(in Chinese).
[9]  郭谋发,徐丽兰,廖希仁,等.采用时频矩阵奇异值分解的配电开关振动信号特征量提取方法[J].中国电机工程学报,2014,34(28):4990-4997.Gou Moufa,Xu Lilan,Liao Xiren,et al.A vibration signal feature extraction method for distribution switches based on singular value decomposition of time-frequency matrix[J].Proceedings of the CSEE,2014,34(28):4990-4997(in Chinese).
[10]  张淑清,孙国秀,李亮,等.基于LMD近似熵和FCM聚类的机械故障诊断研究[J].仪器仪表学报,2013,34(3):714-720.Zhang Shuqing,Sun Guoxiu,Li Liang,et al.Study on mechanical fault diagnosis method based on LMD approximate entropy and fuzzy C-means clustering [J].Chinese Journal of Scientific Instrument,2013,34(3):714-720(in Chinese).
[11]  杨宇,王欢欢,程军圣,等.基于LMD的包络谱特征值在滚动轴承故障诊断中的应用[J].航空动力学报,2012,27(5):1153-1158.Yang Yu,Wang Huanhuan,Cheng Junsheng,et al.Application of envelope spectrum characteristic based on LMD to roller bearing fault diagnosis[J].Journal of Aerospace Power,2012,27(5):1153-1158(in Chinese).
[12]  Rilling G,Flandrin P.On the influence of sampling on the empirical mode decomposition[C]//Proceedings of IEEE Conference on Acoustics,Speech and Signal Processing,Toulouse,France,2006.
[13]  任达千.基于局域均值分解的旋转机械故障特征提取方法及系统研究[D].浙江:浙江大学,2008.Ren Daqian.Study on methods and system for fault characteristics extraction of rotating machines based on local mean decomposition[D].Zhejiang,Zhejiang University,2008(in Chinese).
[14]  Dragomiretskiy K,Zosso D.Variational mode decomposition[J].IEEE Tran on Signal Processing,2014,62(3):531-544.
[15]  鲍永胜.局部放电脉冲波形特征提取及分类技术[J].中国电机工程学报,2013,33(28):168-175.Bao Yongsheng.Partial discharge pulse waveform feature extraction and classification techniques[J].Proceedings of the CSEE,2013,33(28):168-175(in Chinese).
[16]  Bezdek J C.Pattern recognition with fuzzy objective function algorithms[M].New York,USA:Plenum Press,1981.
[17]  Pal N R,Bezdek J C.On cluster validity for the fuzzy c-means model[J].IEEE Transactions on Fuzzy Systems,1995,3(3):370-379.
[18]  胡爱军.Hilbert-Huang变换在旋转机械振动信号分析中的应用研究[D].保定:华北电力大学,2008.Hu Aijun.Research on the application of Hilbert-Huang Transform in vibration signal analysis of rotating machinery[D].Baoding,North China Electric Power University,2008(in Chinese).
[19]  Peng Z K,TseP W,Chu F L.A comparison study of improved Hilbert-Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing[J].Mechanical Systems and Signal Processing,2005(19):974-988.
[20]  张敏,于剑.基于划分的模糊聚类算法[J].软件学报,2004,15(6):858-868.Zhang Min,Yu Jian.Fuzzy partitional clustering algorithms[J].Journal of Software,2004,15(6):858-868 (in Chinese).
[21]  Wang Weina,Zhang Yunjie,Li Yi,et al. The global fuzzy c-means clustering algorithm[J].IEEE Proceedings of the 6th World Congress on Intelligent Control and Automation,2006,21(6):3604-3607.
[22]  Flandrin P,Rilling G,Goncalves P.Empirical mode decompositions as a filter bank[J].IEEE Signal Process Lett,2004,11(2):112-114.收稿日期:

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133