全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Wasserstein距离和改进K-medoids聚类的风电/光伏经典场景集生成算法

DOI: 10.13334/j.0258-8013.pcsee.2015.11.003, PP. 2654-2661

Keywords: 可再生能源,不确定性,经典场景集,场景消减,Wasserstein概率距离指标,K-medoids聚类

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着风电、光伏等可再生能源发电渗透率的增加,电力系统运行需要考虑随之而来的不确定性。场景分析法因为可明确体现不确定性因素的概率特征而被广泛采用,但是由于大规模场景会降低随机规划的求解效率,实用性受到限制。针对该问题,提出一种经典场景集生成算法。该算法首先利用Wasserstein概率距离指标,将单一时刻的风/光出力连续分布概率函数转化为含精确概率信息的最优分位点,随后综合考虑计算规模和概率信息损失,对整个调度区间进行合理划分,段内采用基于改进的K-medoids并行聚类算法进行消减,段间进行场景融合,通过迭代消减、融合运算,形成覆盖整个调度区间的经典场景集。算例中采用国电云南分布式发电示范工程实际数据,结果显示所提出的经典场景集生成算法具有概率信息准确、求解效率高等特点。

References

[1]  何禹清,彭建春,文明,等.含风电的配电网重构场景模型及算法[J].中国电机工程学报,2010,30(28):12-18. He Yuqing,Peng Jianchun,Wen Ming,et al.Scenario model and algorithm for the reconfiguration of distribution network with wind power generators [J].Proceedings of the CSEE,2010,30(28):12-18(in Chinese).
[2]  Bertsimas D,Litvinov E,Sun X A,et al.Adaptive robust optimization for the security constrained unit commitment problem[J].IEEE Trans. on Power Systems,2013,28(1):52-63.
[3]  Zhang Shu,Song Yonghua,Hu Zechun,et al.Robust optimization method based on scenario analysis for unit commitment considering wind uncertainties[C]//Power and Energy Society General Meeting.San Diego,CA:IEEE,2011.
[4]  Hu Bingqian,Wu Lei,Marwali M.On the robust solution to SCUC with load and wind uncertainty correlations [J].IEEE Trans. on Power Systems,2014,29(6):2952-2964.
[5]  舒隽,李春晓,苏济归,等.复杂预想场景下电力系统备用优化模型[J].中国电机工程学报,2012,32(10):105-110. Shu Jun,Li Chunxiao,Su Jigui,et al.Optimal reserve dispatch model considering complicated contingency scenarios[J].Proceedings of the CSEE,2012,32(10):105-110(in Chinese).
[6]  王蓓蓓,刘小聪,李扬.面向大容量风电接入考虑用户侧互动的系统日前调度和运行模拟研究[J].中国电机工程学报,2013,33(22):35-44. Wang Beibei,Liu Xiaocong,Li Yang.Day-ahead generation scheduling and operation simulation considering demand side interaction in large-capacity wind power integrated systems[J].Proceedings of the CSEE,2013,33(22):35-44(in Chinese).
[7]  邹斌,李冬.基于有效容量分布的含风电场电力系统随机生产模拟[J].中国电机工程学报,2012,32(7):23-31. Zou Bin,Li Dong.Power system probabilistic production simulation with wind generation based on available capacity distribution[J].Proceedings of the CSEE,2012,32(7):23-31(in Chinese).
[8]  Zhang Jianyong,Wang Cong.Application of ARMA model in ultra-short term prediction of wind power[C]//2013 International Conference on Computer Sciences and Applications (CSA).Wuhan,China:Hubei University of Technology.2013:361-364.
[9]  于晗,钟志勇,黄杰波,等.采用拉丁超立方采样的电力系统概率潮流计算方法[J].电力系统自动化,2009,33(21):32-36. Yu Han,Zhong Zhiyong,Huang Jiebo,et al.A probabilistic load flow calculation method with Latin hypercube sampling[J].Automation of Electric Power Systems,2009,33(21):32-36(in Chinese).
[10]  Duehee L,Ross B.Future wind power scenario synthesis through power spectral density analysis[J].IEEE Transactions on Smart Grid,2014,5(1):490-500.
[11]  Nicole G K,Holger H,Werner R.Scenario reduction and scenario tree construction for power management problems[C]//IEEE Bologna PowerTech Conference,Bologna,Italy:IEEE,2003.
[12]  Holger H,Werner R.Scenario reduction algorithms in stochastic programming[J].Computational Optimization and Applications,2003,24(2-3):187-206.
[13]  Dupacova,Growe-Kuska J,Romisch N W.Scenario reduction in stochastic programming:an approach using probability metrics[J].Mathematical Programming,2003,95(3):493-511.
[14]  黎静华,韦化,莫东.含风电场最优潮流的Wait-and-See模型与最优渐近场景分析[J].中国电机工程学报,2012,32(22):15-23. ,Mo Dong.Asymptotically optimal scenario analysis and wait-and-see model for optimal power flow with wind power[J].Proceedings of the CSEE,2012,32(22):15-23(in Chinese).
[15]  Hochreiter R,Pflug G C.Financial scenario generation for stochastic multi-stage decision processes as facility location problems[J].Annals of Operations Research,2007,152(1):257-272.
[16]  韩家炜,坎伯,裴建.数据挖掘概念与技术[M].3版.北京:机械工业出版社,2012:295-296.Jiawei Han,Micheline K,Jian Pei.Data mining: concepts and techniques[M].Third Edition.China Machine Press,2012:295-296.
[17]  张舒,褚艳利.GPU高性能运算之CUDA[M].北京:中国水利水电出版社,2009:13-14.Shu Zhang,Yanli Chu.GPU high performance computing:CUDA[M].China Water & Power Press,2009:13-14.
[18]  丁明,林根德,陈自年,等.一种适用于混合储能系统的控制策略[J].中国电机工程学报,2012,32(7):1-6.Ding Ming,Lin Gende,Chen Zinian,et al.A control strategy for hybrid energy storage systems[J].Proceedings of the CSEE,2012,32(7):1-6(in Chinese).
[19]  杨明,韩学山,王士柏,等.不确定运行条件下电力系统鲁棒调度的基础研究[J].中国电机工程学报,2011,31(S):100-107. Yang Ming,Han Xueshan,Wang Shibo,et al.Fundamental research for power system robust dispatch under uncertain operating condition[J].Proceedings of the CSEE,2011,31(S):100-107(in Chinese).
[20]  Liu X,Xu W.Economic load dispatch constrained by wind power availability:a here-and-now approach [J].IEEE Transactions on Sustainable Energy,2010,1(1):2-9.
[21]  Liu Xian.Economic load dispatch constrained by wind power availability:a wait-and-see approach[J].IEEE Transactions on Smart Grid,2010,1(3):347-355.
[22]  Shi Libao,Wang Chen,Yao Liangzhong,et al.Optimal power ?ow solution incorporating wind power[J].IEEE Systems Journal,2012,6(2):233-241.
[23]  梁双,胡学浩,张东霞,等.基于随机模型的光伏发电置信容量评估方法[J].电力系统自动化,2012,36(13):32-37. Liang Shuang,Hu Xuehao,Zhang Dongxia,et al.Probabilistic models based evaluation method for capacity credit of photovoltaic generation[J].Automation of Electric Power Systems,2012,36(13):32-37(in Chinese).
[24]  Heidelberger P,Norton A,Robinson J T.Parallel quicksort using fetch-and-add[J].IEEE Transactions on Computers,1990,39(1),133-138.附录A25 含风光水虚拟电厂日前计划申报模型如下。26 本文考虑的是含多种分布式电源的虚拟电厂日前申报问题:假设各类可再生电源实际出力按政府批复价格结算,虚拟电厂日前申报次日的发电计划,总计划与实际总出力的偏差需支付相应下/上备用费用。在该结算体系下,出力偏差会减少收益,因此虚拟电厂有动力通过提高预测精度或者多电源协调调度,使实际出力与计划尽量相符,从而减少分布式电源不确定性对电网的影响。27 本文从虚拟电厂角度,以前面形成的经典场景集来建立随机规划的期望值模型,考虑了虚拟电厂弃风、弃光,但不计风光水的发电及维护成本。28 虚拟电厂的期望收益是各经典场景下按概率的加权和,每个场景下的收益包括卖电收益减去备用费用,因此其目标函数为

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133