全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于数据驱动的短期风电出力预估-校正预测模型

DOI: 10.13334/j.0258-8013.pcsee.2015.11.002, PP. 2645-2653

Keywords: 风电出力预测,数据驱动,预估-校正,自适应动态规划,小波神经网络

Full-Text   Cite this paper   Add to My Lib

Abstract:

提高风电出力的预测精度可降低含高渗透率风电电力系统调度、优化、规划等策略的保守性和控制策略的复杂性。该文在分析风电出力历史数据与气象因素关系的基础上,建立了基于风电出力数据驱动的短期风电功率预估-校正预测模型。采用具有较高精度的小波神经网络预测模型实现预估环节,以自适应动态规划作为附加优化结构,利用风电出力实测数据及时更新预估模型中的参数,实现校正环节,使得预估模型能够适应风机在额定风速以下运行区域内多变的运行点。测试结果表明,该方法在风机出力变化频繁时,能获得比BP、GABP预测模型更高的精度。

References

[1]  丁华杰,宋永华,胡泽春,等.基于风电场功率特性的日前风电预测误差概率分布研究[J].中国电机工程学报,2013,33(34):136-144. Ding Huajie,Song Yonghua,Hu Zechun,et al.Probability density function of day-ahead wind power forecast error based on power curve of wind farm[J].Proceedings of the CSEE,2013,33(34):136-144(in Chinese).
[2]  赵书强,王扬,徐岩.基于风电预测误差随机性的火储联合相关机会规划调度[J].中国电机工程学报,2014, 34(S):9-16. Zhao Shuqiang,Wang Yang,Xu Yan.Dependent chance programming dispatching of integrated thermal power generation and energy storage system based on wind power forecasting error[J].Proceedings of the CSEE,2014,34(S):9-16(in Chinese).
[3]  刘燕华,刘冲,李伟花,等.基于出力模式匹配的风电集群点多时间尺度基于出力模式匹配的风电集群点多时间尺度功率预测[J].中国电机工程学报,2014,34 (25):4350-4358. Liu Yanhua,Liu Chong,Li Weihua,et al.Multi-time scale power prediction of wind farm cluster based on profile pattern matching[J].Proceedings of the CSEE,2014,34(25):4350-4358.
[4]  梅生伟,郭文涛,王莹莹,等.一类电力系统鲁棒优化问题的博弈模型及应用实例[J].中国电机工程学报,2013,33(19):47-54. Mei Shengwei,Guo Wentao,Wang Yingying,et al.A type of game model and application examples of robust optimization problem in the electric power system [J].Proceedings of the CSEE,2013,33(19):47-54(in Chinese).
[5]  魏韡,刘锋,梅生伟.电力系统鲁棒经济调度:(一)理论基础[J].电力系统自动化,2013,37(17):37-43. Wei Wei,Liu Feng,Mei Shengwei.The robust economic operation in the electric power system[J].Automation of Electric Power Systems,2013,37(17):37-43(in Chinese).
[6]  梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用[M].北京:清华大学出版社,2008. Mei Shengwei,Shen Tielong,Liu Kangzhi.Modern robust control theory and application[M].Beijing:Tsinghua University Press,2008(in Chinese).
[7]  Murray J J,Cox C J,Lendaris G G,et al.Adaptive dynamic programming[J].IEEE Transactions on Systems,Man,and Cybernetics,Part C:Applications and Reviews,2002,32(2):140-153.
[8]  Guo Wentao,Liu Feng,Si Jennie,et al.Incorporating approximate dynamic programming-based parameter tuning into PD-type virtual inertia control of DFIGs[C]//Neural Networks (IJCNN),The 2013 International Joint Conference on.IEEE,2013:1-8.
[9]  Jennie Si,Wang Yutseng.On-line learning by association and reinforcement[J].IEEE Transactions on Neural Networks,2001,12(2):264-276.
[10]  Soman S S.A review of wind power and wind speed forecasting methods with different time horizons[C]// North American Power Symposium.Arlington,TX:IEEE,2010.
[11]  冯双磊,王伟胜,刘纯,等.风电场功率预测方法研究[J].中国电机工程学报,2010,30(2):1-6. Feng Shuanglei,Wang Weisheng,Liu Chun,et al.Study on the physical approach to wind power prediction [J].Proceedings of the CSEE,2010,30(2):1-6(in Chinese).
[12]  茆美琴,周松林,苏建徽.基于脊波神经网络的短期风电功率预测[J].电力系统自动化,2011,35(7):70-74. Mao Meiqin,Zhou Songlin,Su Jianhui.Short-termwind power forecast based on ridgelet neural network [J].Automation of Electric Power Systems,2011,35(7):70-74(in Chinese).
[13]  丁志勇,杨苹,杨曦,等.基于连续时间段聚类的支持向量机风电功率预测方法[J].电力系统自动化,2012,36(14):131-135. Ding Zhiyong,Yang Ping,Yang Xi,et al.Wind power prediction method based on sequential time clustering support vector machine[J].Automation of Electric Power Systems,2012,36(14):131-135(in Chinese).
[14]  张宜阳,卢继平,孟洋洋,等.基于经验模式分解和混沌相空间重构的风电功率短期预测[J].电力系统自动化,2012,36(5):24-28. Zhang Yiyang,Lu Jiping,Meng Yangyang,et al.Wind power short-term forecasting based on empirical mode decomposition and chaotic phase space reconstruction [J].Automation of Electric Power Systems,2012,36(5):24-28(in Chinese).
[15]  周封,金丽斯,刘健,等.基于多状态空间混合 Markov 链的风电功率概率预测[J].电力系统自动化,2012,36(6):29-33. Zhou Feng,Jin Lisi,Liu Jian,et al.Probabilistic wind power forecasting based on multi-state space and hybrid markov chain models[J].Automation of Electric Power Systems,2012,36(6):29-33(in Chinese).
[16]  李少远,席裕庚.模糊动态环境下复杂系统的满意优化控制[J].自动化学报,2002,28(3):408-412. Li ShaoYuan; Xi YuGeng.Satisfactory optimization control of complex systems in fuzzy dynamic environment [J].Acta Automatica Sinica,2002,28(3):408-412(in Chinese).
[17]  Bellman R,Kalaba R E.Dynamic programming and modern control theory[M].New York:Academic Press,1965.
[18]  范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报,2008,28(34):118-123(in Chinese). Fan Gaofeng,Wang Weisheng,Liu Chun,et al.Wind power prediction based on artificial neural network [J].Proceedings of the CSEE,2008,28(34):118-123(in Chinese).
[19]  梅生伟,朱健全.智能电网中的若干数学与控制科学问题及其展望[J].自动化学报,2013,39(2):119-131Mei Shengwei,Zhu Jianquan.Some mathematics and control science problems in smart grid and its prospects [J].Acta automatica,2013,39(2):119-131(in Chinese).
[20]  Zhang J,Walter G G,Miao Y,et al.Wavelet neural networks for function learning[J].IEEE Transactions on Signal Processing,1995,43(6):1485-1497.
[21]  Al-Tamimi A,Lewis F L,Abu-Khalaf M.Discrete-time nonlinear HJB solution using approximate dynamic programming:convergence proof[J].IEEE Transactions on Systems Man and Cybernetics Part B:Cybernetics,2008,38(4):943-949.
[22]  Liu F,Sun J,Si J,et al.A boundedness result for the direct heuristic dynamic programming[J].Neural Networks,2012(32):229-235.
[23]  Liu D,Wei Q.Finite-approximation-error-based optimal control approach for discrete-time nonlinear systems [J].IEEE Transactions on Cybernetics,2013,43(2):779-789.
[24]  Liu D,Wei Q.Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems[J].IEEE Transactions on Neural Network and Learning Systems,2014,25(3):621-634.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133