全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于火焰自由基成像和支持向量机的燃烧过程NOx排放预测

DOI: 10.13334/j.0258-8013.pcsee.2015.06.016, PP. 1413-1419

Keywords: 火焰基,图像处理,火焰温度,支持向量机,NOx排放预测

Full-Text   Cite this paper   Add to My Lib

Abstract:

火焰特征参数对燃烧稳定性及污染物生成具有重要影响。火焰自由基作为燃烧的中间产物,其特征在研究污染物的生成机制及其控制方面起着重要的作用。文中通过火焰自由基图像处理和火焰温度监测,并结合支持向量机的软计算法提出了一种NOx(NO和NO2)排放量的在线预测技术。该技术通过光增强成像系统采集火焰自由基OH*,CN*,CH*和C2*的数字图像,同时使用光谱仪和双色法获取火焰温度。在所得的火焰基图像中提取其特征值(自由基灰度等值线和比值),并结合火焰温度,建立基于支持向量机的软计算方法,实现了对NOx的排放预测。在燃气燃烧试验炉上的实验结果验证了基于火焰自由基图像的NOx预测排放模型的有效性。

References

[1]  国家统计局能源统计司.2011中国能源统计年鉴[M].北京:中国统计出版社,2012:50-51.Energy statistical department of National bureau of statistics.2011 China energy statistical yearbook [M].Beijing:China Statistic Press,2012:50-51(in Chinese).
[2]  张敏,陈军.国内燃煤电厂氮氧化物的控制现状及发展[J].四川化工,2009,12(5):44-52.Zhang Min,Chen Jun.Control and development situation of nitrogen oxide at domestic coal-fired power plant [J].Sichuan Chemical Industry,2009,12(5):44-52(in Chinese) .
[3]  You C F,Xu X C.Coal combustion and its pollution control in China[J].Energy,2010,35(11):4467-4472.
[4]  Iane H P,Mmow N,Gibbs B M.Nitrogen sulfur interactions in coal flames[J].Fuel,2001,80(7):887-897.
[5]  Wei X L,Schnellu U,Han X H,et al. Interactions of CO,HCI and SO x in Pulverized coal flames[J].Fuel,2004,83(9):1227-1233.
[6]  Ikonen E,Najim K,Kortela U.Neuro-fuzzy modelling of power plant flue-gas emissions[J].Engineering Applications of Artificial Intelligence,2000,13(6):705-717.
[7]  Shakila M,Elshafeia M,Habibb M A,et al.Soft sensor for NO x and O 2 using dynamic neural networks [J].Computers & Electrical Engineering,2009,35(4):578-586.
[8]  Li K,Thompson S,Wieringa P A,et al.Neural networks and genetic algorithms can support human.supervisory control to reduce fossil fuel power plant emissions [J].Cognition,Technology & Work,2003,5(2):107-126.
[9]  王春林,周昊,李国能等.基于遗传算法和支持向量机的低NO x 燃烧优化[J].中国电机工程学报,2007,27(11):40-44.Wang Chunlin,Zhou Hao,Li Guoneng,et al.Support vector machine and genetic algorithms to optimize combustion for low NO x emission[J].Proceedings of the CSEE,2007,27(11):40-44(in Chinese).
[10]  Zhou H,Cen K F,Fan J R.Modeling and optimization of the NO x emission characteristics of a tangentially fired boiler with artificial neural networks[J].Energy,2004,29(1):167-183.
[11]  郭建民.基于数字图像处理技术的锅炉火焰检测与污染物排放特性研究[D].北京:中国科学院,2006.Guo Jianmin.Research on characteristic of NO x emission and combustion monitoring based on image digital technology[D].Beijing:Chinese Academy of Sciences,2006.
[12]  Ahmada A L,Azidb I A,Yusofb A R,et al.Emission control in palm oil mills using artificial neural network and genetic algorithm[J].Computers & Chemical Engineering,2004,28(12):2709-2715.
[13]  陈庆文,马晓倩,刘翱.大型电站锅炉混煤掺烧的NO x 排放特性预测与运行优化[J].中国电机工程学报,2009,29(23):20-26.Chen Qingwen,Ma Xiaoqian,Liu Ao.Prediction and operation optimization for NO x emission property of large-scale mixed coal-fired utility boiler[J].Proceedings of the CSEE,2009,29(23):20-26(in Chinese).
[14]  吕玉坤,彭鑫,赵锴.电站锅炉热效率和NO x 排放混合建模与优化[J].中国电机工程学报,2011,31(26):16-22.Lü Yukun,Peng Xin,Zhao Kai.Hybrid modeling optimization of thermal efficiency and NO x emission of utility boiler[J].Proceedings of the CSEE,2011,31(26):16-22(in Chinese).
[15]  顾燕萍,赵文杰,吴占松.基于最小二乘支持向量机的电站锅炉燃烧优化[J].中国电机工程学报,2010,30(17):91-97.Gu Yanping,Zhao Wenjie,Wu Zhansong.Combustion optimization for utility boiler based on least square-support vector machine[J].Proceedings of the CSEE,2010,30(17):91-97(in Chinese).
[16]  刘吉臻,吕游,杨婷婷.基于变量选择的锅炉NO x 排放的最小二乘支持向量机建模[J].中国电机工程学报,2012,32(20):102-107.Liu Jizhen,Lü You,Yang Tingting.Least squares support vector machine modeling on NO x emission of boilers based on variable selection[J].Proceedings of the CSEE,2012,32(20):102-107(in Chinese).
[17]  Higgins B,McQuay F,Lacas M Q,et al.Systematic measurements of OH chemiluminescence for fuel-lean,high-pressure,premixed,laminar flames[J].Fule,2001,80(1):67-74.
[18]  Krabicka J,Lu G,Yan Y.Profiling and characterization of flame radicals by combining spectroscopic imaging and neural network techniques[J].IEEE Trans on Instrumentation and Measurement,2011,60(5):1854- 860.
[19]  Kathrotia T,Riedel U,Warnatz J.A numerical study on the relation of OH*,CH*,and C 2 * chemiluminescence and heat release in premixed methane flames[C]// Proceedings of the European Combustion Meeting, Austria ,2009,1-5.
[20]  Hardalupas Y,Orain M,Panoutsos C S,et al.Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air(MAST B LIQUD) [J].Applied Thermal Engineering,2004,24(11/12):1619-1632.
[21]  Bombach R,Kappeli B.Simultaneous visualization of transient species in flames by planar-laser induced fluorescence using a single laser system[J].Applied Physics B:Lasers and Optics,1999,68(2):251-255.
[22]  Li X L,Sun D,Lu G,et al.Prediction of NO x emissions based on flame radical imaging and neural network techniques[C]//IEEE Imaging Science and Techniques (IST),Manchester,England,2012.
[23]  Clarke S,Preto F.Biomass Burn Characteristics[EB/OL].2011,http://www.omafra.gov.on.ca/english/engineer/facts/11- 033.htm.
[24]  Lu G,Yan Y,Riley G,et al.Concurrent measurement of temperature and soot concentration of pulverized coal flames[J].IEEE Trans on Instrumentation and Measurement,2002,51(5):990-995.
[25]  Sun Y,Lou C,Zhou H.A simple judgment method of gray property of flames based on spectral analysis and the two-color method for measurements of temperatures and emissivity[J].Proceedings of the combustion Institute,2011,33(1):735-741.
[26]  Esen H,Ozgen F,Esena M,Sengur A.Modelling of a new solar air heater through least-squares support vector machines[J].Expert Systems With Applications,2009,36(7):10673-10682.
[27]  Boser B E,Guyon I,Vapnik V.A training algorithm for optimal margin classiers[C]// Proceedings of the Fifth Annual Workshop on Computational Learning Theory,1992,ACM Press,144-152.
[28]  Cortes C,Vapnik V.Support-vector network[J].Machine Learning,1995,20(3):273-297.
[29]  Hsu C W,Chang C Ch,Lin Ch J.A practical guide to support vector classification[EB/OL].2010,www.csie.ntu. edu.tw/~cjlin.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133