杨明,韩学山,王士柏,等.不确定运行条件下电力系统鲁棒调度的基础研究[J].中国电机工程学报,2011,31(增刊):100-107.Yang Ming,Han Xueshan,Wang Shibo,et al.Fundamental research for power system robust dispatch under uncertain operating condition[J].Proceedings of the CSEE,2011,31(S):100-107(in Chinese).
[2]
魏韡,刘锋,梅生伟.电力系统鲁棒经济调度:(一)理论基础[J].电力系统自动化,2013,37(17):37-43.Wei Wei,Liu Feng,Mei Shengwei.Robust and economical scheduling methodology for power systems-Part one:theoretical foundations[J].Automation of Electric Power Systems,2013,37(17):37-43(in Chinese).
[3]
孙元章,吴俊,李国杰,等.基于风速预测和随机规划的含风电场电力系统动态经济调度[J].中国电机工程学报,2009,29(4):41-47.Sun Yuanzhang,Wu Jun,Li Guojie,et al.Dynamic economic dispatch considering wind power penetration based on with speed forecasting and stochastic programming[J].Proceedings of the CSEE,2009,29(4):41-47(in Chinese).
[4]
Wang Jianhui,Mohammad Shahidehpour,Li Zuyi.Security constrained unit commitment with volatile wind power generation[J].IEEE Trans. on Power Systems,2008,23(3):1319-1327.
[5]
Vladimiro Miranda,Pun Sio Hang.Economic dispatch model with fuzzy wind constraints and attitudes of dispatchers[J].IEEE Trans. on Power Systems,2005,20(4):2143-2145.
[6]
Bala Venkatesh,Peng Yu,Gooi H B,et al.Fuzzy MILP unit commitment incorporating wind generators[J].IEEE Trans. on Power Systems,2008,23(4):1738-1746.
[7]
梅生伟,郭文涛,王莹莹,等.一类电力系统鲁棒优化问题的博弈模型及应用实例[J].中国电机工程学报,2013,33(33):47-56.Mei Shengwei,Guo Wentao,Wang Yingying,et al.A game model for robust optimization of power systems and its application[J].Proceedings of the CSEE,2013,33(33):47-56(in Chinese).
[8]
Jiang R,Wang J,Guan Y.Robust unit commitment with wind power and pumped storage hydro[J].IEEE Trans. on Power Systems,2012,27(2):800-810.
[9]
Bertsimas D,Litvinov E,Sun X A,et al.Adaptive robust optimization for the security constrained unit commitment problem[J].IEEE Trans. on Power Systems,2013,28(1):52-63.
[10]
Luo X,Chung C,Yang H,et al.Robust optimization-based generation self-scheduling under uncertain price[J].Mathematical Problems in Engineering,2011:1-17.
[11]
张伯明,吴文传,郑太一,等.消纳大规模风电的多时间尺度协调的有功调度系统设计[J].电力系统自动化,2011,35(1):1-6.Zhang Boming,Wu Wenchuan,Zheng Taiyi,et al.Design of a multi-time scale coordinated active power dispatching system for accommodating large scale wind power penetration[J].Automation of Electric Power Systems,2011,35(1):1-6(in Chinese).
[12]
Marannino P,Granelli G P,Montagna M,et al.Different time-scale approaches to the real power dispatch of thermal units[J].IEEE Trans. on Power Systems,1990,5(1):169-176.
[13]
雷宇,杨明,韩学山.基于场景分析的含风电系统机组组合的两阶段随机优化[J].电力系统保护与控制,2012,40(23):58-67.Lei Yu,Yang Ming,Han Xueshan.A two-stochastic optimization of unit commitment considering wind power based on scenario analysis[J].Power System Protection and Control,2012,40(23):58-67(in Chinese).
[14]
Winston Wayne L.Operations research:applications and algorithms[M].Duxbury Press,2003.
[15]
余贻鑫,陈礼义.电力系统的安全性和稳定性[M].北京:科学出版社,1988:41-54.Yu Yixin,Chen Liyi.Security and stability of power system[M].Beijing:Science Press,1988:41-54(in Chinese).
[16]
Zhu J,Fan R,Xu G,et al.Construction of maximal steady-state security regions of power systems using optimization method[J].Electric power systems research,1998,44(2):101-105.
[17]
Wood A J,Wollenberg B F.Power generation,operation,and control[M].John Wiley & Sons,1996:350-356.
[18]
Wang S J,Shahidehpour S M,Kirschen D S,et al.Short-term generation scheduling with transmission and environmental constraints using an augmented lagrangian relaxation[J].IEEE Trans. on Power Systems,1995,10(3):1294-1301.
[19]
杨明,韩学山,梁军,等.基于等响应风险约束的动态经济调度[J].电力系统自动化,2009,33(1):14-17.Yang Ming,Han Xueshan,Liang Jun,et al.Dynamic economic dispatch with equal response risk constraints[J].Automation of Electric Power Systems,2009,33(1):14-17(in Chinese).
[20]
Soyster A L.Convex programming with set-inclusive constraints and applications to inexact linear programming[J].Operation Research,1973,21(5):1154-1157.附录A21 目标包括:22 1)有效静态安全域最大化目标:23 (A1)24 2)经济性目标:25 (A2)26 约束包括:27 1)目标等价处理所引入的约束:28 (A3)29 (A4)30 2)运行基点功率平衡约束:31 (A5)32 3)参与因子和为1约束:33 (A6)34 4)形成静态安全域AGC机组所需提供的最大调整量:35 (A7)36 (A8)37 5)AGC机组最大向上、向下调整能力约束:38 (A9)39 (A10)40 6)AGC机组输出功率上(下)限约束:41 (A11)42 (A12)43 7)机组运行基点变化速率约束:44 (A13)45 8)支路潮流约束(正向):46 (A14)47 (A15)48 (A16)49 9)支路潮流约束(反向):50 (A17)51 (A18)52 (A19)53 式(A1)—(A19)构成完整计算模型。模型中决策变量依54 次有 y i up 、 y i dn 、 p i 、 α i 、55 附录B56 表B1 6节点系统线路参数