全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

面向智能电网应用的电力大数据关键技术

DOI: 10.13334/j.0258-8013.pcsee.2015.03.001, PP. 503-511

Keywords: 大数据,云计算,智能电网,数据集成,数据分析,数据处理,数据展现

Full-Text   Cite this paper   Add to My Lib

Abstract:

大数据为智能电网的发展注入新的活力,掌握电力大数据的关键技术对电力行业的可持续发展和坚强智能电网的建立具有重要意义。在分析大数据、云计算、智能电网三者关系的基础上,给出具有通用性的电力大数据平台总体架构,并从电力大数据的集成管理技术、数据分析技术、数据处理技术、数据展现技术4个方面深入探讨符合电力企业发展需求的大数据关键技术的选择。最后通过3个典型案例,分析了电力大数据关键技术在新能源并网、风电机组安全评估、电网灾难预警上的应用。大数据关键技术在电力行业的广泛应用必将带来行业的变革,将智能电网的发展推向新的阶段。

References

[1]  Gartner.Top ten strategic technology trend for 2012 [EB/OL].(2011-11-05)[2014-08-.http://www.gartner.com.
[2]  Birney E.The making of ENCODE:lessons for big-data projects[J].Nature,2012(489):49-51.
[3]  张东霞,苗新,刘丽萍,等.智能电网大数据技术发展研究[J].中国电机工程学报,2015,35(1):2-12.Zhang Dongxia,Miao Xin,Liu Liping,et al. Research on development strategy for smart grid big data[J].Proceedings of the CSEE,2015,35(1):2-12(in Chinese).
[4]  张素香,赵丙镇,王风雨,等.海量数据下的电力负荷短期预测[J].中国电机工程学报,2015,35(1):37-42.Zhang Suxiang,Zhao Binzhen,Wang Fengyu,et al.Short-term power load forecasting based on big data[J].Proceedings of the CSEE,2015,35(1):37-42(in Chinese).
[5]  UN Global Pulse.Big data for development:challenges & opportunities[EB/OL].(2012-11-05)[2014-08-.http://www.unglobalpulse.org/projects/Bigdata Development.
[6]  Agrawal D,Bernstein P,Bertino E,et al.Challenges and opportunities with big data[EB/OL].(2012-02-01) [2014-10-.http://www.cra.org/ccc/resources/ccc-led-white-papers.
[7]  李国杰,程学旗.大数据研究:未来科技及经济社会发展的重大战略领域——大数据的研究现状与科学思考[J].中国科学院院刊,2012(6):647-657.Li Guojie,Chen Xueqi.Research status and scientific thinking of big data[J].Bulletin of the Chinese Academy of Sciences,2012(6):647-657(in Chinese).
[8]  孟小峰,慈祥.大数据管理:概念、技术与挑战[J].计算机研究与发展,2013,50(1):146-169.Meng Xiaofeng,Ci Xiang.Big data management:concepts,techniques and challenges[J].Journal of Computer Research and Development,2013,50(1):146-169(in Chinese).
[9]  李贵兵,罗洪.大数据下的智能数据分析技术研究[J].科技资讯,2013(30):11-12.Li Guibing,Luo Hong.Intelligent data analysis under the background of big data[J].Science & Technology Information,2013(30):11-12(in Chinese).
[10]  中国电机工程学会信息化专业委员会.中国电力大数据发展白皮书[M].北京:中国电力出版社,2013:10-15.Informatization Committee of the CSEE.White paper of electric power big data of China[M].Beijing:China Electric Power Press,2013:10-15(in Chinese).
[11]  张文亮,刘壮志,王明俊,等.智能电网的研究进展及发展趋势[J].电网技术,2009,33(13):1-11.Zhang Wenliang,Liu Zhuangzhi,Wang Mingjun,et al.Research status and development trend of smart grid [J].Power System Technology,2009,33(13):1-11(in Chinese).
[12]  孙柏林.“大数据”技术及其在电力行业中的应用[J].电气时代,2013(8):18-23.Sun Bolin.Big data technology and its application in power industry[J].Electric Age,2013(8):18-23(in Chinese).
[13]  罗军舟,金嘉晖,宋爱波,等.云计算:体系架构与关键技术[J].通信学报,2011,32(7):3-21.Luo Junzhou,Jin Jiahui,Song aibo,et al.Cloud computing:architecture and key technologies[J].Journal on Communications,2011,32(7):3-21(in Chinese).
[14]  李志刚,朱志军.大数据:大价值、大机遇、大变革[M].北京:电子工业出版社,2012:182.Li Zhigang,Zhu Zhijun.Big data:big value,big chance,big reform[M].Beijing:Publishing House of Electronics Industry,2012:182(in Chinese).
[15]  姚宏宇.大数据与云计算[J].信息技术与标准化,2013(5):21-22.Yao Hongyu.Big data and cloud computing [J].Information Technology & Standardization,2013(5):21-22(in Chinese).
[16]  饶威,丁坚勇,路庆凯.智能电网云计算平台构建[J].华东电力,2011,39(9):1493-1496.Rao Wei,Ding Jianyong,Lu Qingkai.Cloud computing platform for smart grid[J].East China Electric Power,2011,39(9):1493-1496.
[17]  赵刚.大数据技术与应用实践指南[M].北京:电子工业出版社,2013:56-58.Zhao Gang.Big data technology and application practice [M].Beijing:Publishing House of Electronics Industry,2013:56-58(in Chinese).
[18]  苏文博,林亮成,杨景龙.电网数据集成与管理系统研究[J].中国电力教育,2008(S3):369-370.Su Wenbo,Lin Liangcheng,Yang Jinglong.Research on data integration and management system for power grid[J].China Electric Power Education,2008(S3):369-370(in Chinese).
[19]  McKinsey& Company.Big data:the next frontier for innovation,competition,and productivity[M].New York:McKinsey Global Institute,2011:1-28.
[20]  Wu Xindong,Zhu Xingquan,Wu Gongqing,et al.Data mining with big data[J].IEEE Transactions on Knowledge and Data Engineering,2014,26(1):97-107.
[21]  Li Y H,Maguire L.Selecting critical pattern based on local geometrical and statistical information[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(6):1189-1201.
[22]  Hoi C H,Wang J L,Zhao P L.Online feature selection for mining big data[C]// Proeedings of 1st International Workshop on Big Data,Streams and Heterogeneous Source Mining.Beijing,China:ACM,2012:93-100.
[23]  Kim B J.A classifier for big data[C]//Proceedings of the 6th International Conference on Convergence and Hybrid Information Technology.Daejeon,Republic of Korea:ACM,2012.
[24]  Havens T C.Fuzzy c-means algorithms for very large data[J].IEEE Transactions on Fuzzy System,2012,20(6):1130-1146.
[25]  Shim K.Algorithms for big data analysis[J].Proceedings of the VLDB Endowment,2012,5(12):2016-2017.
[26]  Zhang J B,Li T R,Pan Y.Parallel rough set based knowledge acquisition using Map Reduce from big data[C]//Proceedings of 1st International Workshop on Big Data,Streams and Heterogeneous Source Mining.Beijing,China:ACM,2012.
[27]  孔英会.数据流技术及其在电力信息处理中的应用研究[D].河北:华北电力大学,2009.Kong Yinghui.Study on data stream techniques and its application in electric power information processing [D].Heibei:North China Electric Power University,2009(in Chinese).
[28]  郭崇军,洪峰,陈金富,李勇,徐友平,奚江惠,汪剑波.可视化技术在电力系统中的应用探讨[J].水电能源科学,2011,29(2):146-149.Guo Chongjun,Hong Feng,Chen Jinfu.Application of Scientific visualization in smart grid[J].Water Resources and Power,2011,29(2):146-149(in Chinese).
[29]  王先兵,张学东,何涛,等.三维虚拟变电站数字可视化管理与监控系统[J].武汉大学学报:工学版,2011,44(6):786-791.Wang Xianbing,Zhang Xuedong,He Tao,et al.Digital visualization management and monitoring system for 3D virtual transformer substations[J].Engineering Journal of Wuhan University,2011,44(6):786-791(in Chinese).
[30]  白文光.可视化供电能力计算软件在地调中的应用研究[D].北京:华北电力大学,2005.Bai Wenguang.Study on the application of visible power supply capability computation for district electric power dispatching center[D].Beijing:North China Electric Power University,2005(in Chinese).
[31]  胡之武.基于GIS电网运行数据可视化的方法[D].浙江:浙江大学,2005.Hu Zhiwu.Study on the visualization of power system running data based on GIS[D].Zhejiang:Zhejiang University,2005(in Chinese).
[32]  陈启买,刘海,贺超波,等.实时监控数据图形展示与历史回放关键技术研究[J].电脑编程技巧与维护,2009(22):95-98.Chen Qimai,Liu Hai,He Chaobo,et al.Research on key technology of graph display and history playback for real time monitoring data[J].Artificial Intelligence and Identification Techniques,2009(22):95-98(in Chinese).
[33]  IBM.风电场微观选址.IBM[EB/OL].(2014-08-17).http://www31.ibm.com/solutions/cn/industries/energy/ thankyou/energy_wp.shtml.34 IBM.Power wind site down time IBM's solution in power industry[EB/OL] .(2014-08-17).http://www31.ibm.com/solutions/cn/industries/energy/thankyou/energy_wp.shtml(in Chinese).
[34]  刘俊卿.大数据驯服风能[J].中国经济和信息化,2014(2):99-100.Liu Junqing.Big data tame wind[J].Informatization,2014(2):99-100(in Chinese).
[35]  吕庭彦,李亚冬,蒋维,等.基于大数据挖掘技术的风电机组安全经济运行状态综合评估系统[C]//中国电力企业联合会议.北京:中国电力企业联合会,2013:10.Lu Tingyan,Li Yadong,Jiang Wei,et al.Comprehensive assessment system of safe and economic operation state for wind turbines[C]//Beijing:China Electricity Council.China Electricity Council,2013:10(in Chinese).
[36]  曹一家,陈晓刚,孙可.基于复杂网络理论的大型电力系统脆弱线路辨识[J].电力自动化设备,2006,26(12):1-5.Cao Yijia,Chen Xiaogang,Sun Ke.Identification of vulnerable lines in power grid based on complex network theory[J].Electric Power Automation Equipment,2006,26(12):1-5(in Chinese).
[37]  白加林,刘天琪,曹国云,等.电力系统脆弱性评估方法综述[J].电网技术,2008(S2):26-30.Bai Jialin,Liu Tianqi,Cao Guoyun,et al.A survey on vulnerability assessment method for power system [J].Power System Technology,2008(S2):26-30(in Chinese).
[38]  IBM.IBM 智慧电力解决方案(电网部分)[EB/OL].(2014-09-20).IBM.http:// www.ibm. com/smarterplanet/cn/zh/ smart_grid/ideas/index.html.IBM.IBM smart grid solution (power grid) [EB/OL].(2014-09-20).http://www.ibm.com/smarterplanet/cn/zh/smart_grid/ideas/index.html (in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133