全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

智能配电网大数据应用需求和场景分析研究

DOI: 10.13334/j.0258-8013.pcsee.2015.02.004, PP. 287-293

Keywords: 大数据,智能配电网,场景分析,风险预警,运行评估

Full-Text   Cite this paper   Add to My Lib

Abstract:

智能配电网中存在大量异构多源的数据,其中的数据规模和特点符合大数据的各项特征。首先总结配电网大数据的来源和特征,然后从智能配电网中的应用场景出发,分别从配电网负荷预测、运行状态评估与预警、电能质量监测和评估、基于配电网数据融合的停电优化等方面进行分析。从不同系统和不同数据结构角度,对多源数据融合中的不良数据辨识进行重点分析,同时还归纳了配电网大数据关联模型建模方法和配电网大数据分析手段。通过在配电网中运行大数据的分析技术,能够为智能配电网开展分析提供强有力的计算和分析条件,大数据的分析结果可为配电网规划和安全运行提供数据支撑,也可有效提升配电网各类资产健康水平。

References

[1]  Merv Adrian.Big data:it’s going mainstream and it’s your next opportunity[J].Teradata Magazine,2011,5(1):3-5.
[2]  Manyika J,Chui M,Brown B,et al.Big data:the next frontier for innovation,competition,and productivity [R].USA:Mckinsey Global Institute,2011.
[3]  李庚银,罗艳,周明,等.基于数学形态学和网格分形的电能质量扰动检测及定位[J].中国电机工程学报,2006,26(3):25-30.Li Gengyin,Luo Yan,Zhou Ming,et al.Power quality disturbance detection and location based on mathematical morphology and grille fractal[J].Proceedings of the CSEE,2006,26(3):25-30(in Chinese).
[4]  文继锋,刘沛.一种电能质量扰动检测的新方法[J].中国电机工程学报,2002,22(12):17-20.Wen Jifeng,Liu Pei.A new method for detection of power quality disturbances[J].Proceedings of the CSEE,2002,22(12):17-20(in Chinese).
[5]  陶顺,肖湘宁.电力系统电能质量评估体系架构[J].电工技术学报,2010,25(4):171-175.Tao Shun,Xiao Xiangning.Infrastructure of the power quality assessment system of power systems [J].Transactions of China Electrotechnical Society,2010,25(4):171-175(in Chinese).
[6]  JiaWei Han,Micheline K,Jian P.Data mining: Concepts and technique[M].3rd ed.New York:Elsevier,2011.
[7]  曲朝阳,王蕾,曲楠,等.智能电网知识处理与可视化模型方法[M].北京:科学出版社,2013.Qu Chaoyang,Wang Lei,Qu Nan,et al.Knowledge processing and visual modeling method in smart grid[M].Beijing:Science Press,2013(in Chinese).
[8]  贺仁睦,王卫国,蒋德斌,等.广东电网动态负荷实测建模及模型有效性研究[J].中国电机工程学报,2002,22(3):78-82.He Renmu,Wang Weiguo,Jiang Debin,et al.Measurement based dynamic load modeling and model validation on Guangdong grid[J].Proceedings of the CSEE,2002,22(3):78-82(in Chinese).
[9]  姚建刚,陈亮,戴习军,等.混沌神经网络负荷建模的理论研究[J].中国电机工程学报,2002,22(3):99-102.Yao Jiangang,Chen Liang,Dai Xijun,et al.Academic research of load modeling with chaotic neural network [J].Proceedings of the CSEE,2002,22(3):99-102(in Chinese).
[10]  Quinlan J R.Programs for machine learning[M].San Francisco:Morgan Kaufmann Publishers,1993:23-26.
[11]  Breiman L,Frieman J,Olshen R,et al.Classification and regression trees[M].Chapman and Hall/CRC,1984:32-35.
[12]  Mehta M,Agrawal R,Rissanen J.SLIQ:A fast scalable classifier for data mining[C]//Proceedings of the 5th International Conference on Extending Database Technology:Advances in Database Technology.France:EDBT,1996:67-78.
[13]  王德文,宋亚奇,朱永利.基于云计算的智能电网信息平台[J].电力系统自动化,2010,34(22):7-12.Wang Dewen,Song Yaqi,Zhu Yongli.Information platform of smart grid based on cloud computing [J].Automation of Electric Power Systems,2010,34(22):7-12(in Chinese).
[14]  朱征,顾中坚,吴金龙,等.云计算在电力系统数据灾备业务中的应用研究[J].电网技术,2012,36(9):43-50.Zhu Zheng,Gu Zhongjian,Wu Jinlong,et al.Application of cloud computing in electric power system data recovery[J].Power System Technology,2012,36(9):43-50(in Chinese).
[15]  沐连顺,崔立忠,安宁.电力系统云计算中心的研究与实践[J].电网技术,2011,35(6):170-175.Mu Lianshun,Cui Lizhong,An Ning.Research and practice of cloud computing center for power system [J].Power System Technology,2011,35(6):170-175(in Chinese).
[16]  王广辉,李保卫,胡泽春,等.未来智能电网控制中心面临的挑战和形态演变[J].电网技术,2011,35(8):1-5.Wang Guanghui,Li Baowei,Hu Zechun,et al.Challenges and future evolution of control center under smart grid environment[J].Power System Technology,2011,35(8):1-5(in Chinese).
[17]  刘树仁,宋亚奇,朱永利,等.基于Hadoop的智能电网状态监测数据存储研究[J].计算机科学,2013,40(1):81-84.Liu Shuren,Song Yaqi,Zhu Yongli,et al.Research on data storage for smart grid condition monitoring using hadoop[J].Computer Science,2013,40(1):81-84(in Chinese).
[18]  Rusitschka S,Eger K,Gerdes C.Smart grid data cloud:a model for utilizing cloud computing in the smart grid domain[C]//2010 First IEEE International Conference on Smart Grid Communications.Gaithersburg,IEEE,2010:483-488.
[19]  Christophe B.The smart grid:Hadoop at the Tennessee Valley Authority (TVA)[EB/OL].(2009-06-01)[2013-02- .http://www.cloudera.com/blog/2009/06/smart-grid-hadoop-tennessee-valley-authority-tva/.
[20]  Kawasoe S,Igarashi Y,Shibayama K,et al.Examples of distributed information platforms constructed by power utilities in Japan[C]//CIGRE 2012.Paris:CIGRE,2012:1-7.
[21]  Kenneth P B,Lakshmi G,Robbert van R.Running smart grid control software on cloud computing architectures [C]//Workshop on Computational Needs for the Next Generation Electric Grid.Ithaca:Lawrence Berkeley National Laboratory,2011:1-4.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133