全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

电力系统静态安全状态实时感知的相关向量机法

DOI: 10.13334/j.0258-8013.pcsee.2015.02.005, PP. 294-301

Keywords: 安全状态感知,相关向量机,贝叶斯概率学习,Relief特征选择,稀疏核模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

在信息物理系统(cyberphysicalsystems,CPS)深度融合背景下,提出一种安全状态实时感知的相关向量机(relevancevectormachine,RVM)数据驱动方法。RVM是贝叶斯概率框架下基于核函数的学习方法,通过多层先验的超参数设置获取模型参数的稀疏解,并采用伯努利分布获得分类后验概率。该方法首先根据日前市场的运行与调度规则,产生运行条件,构造安全评估特征集及事故安全分类;然后将基于距离的Relief算法用于特征排序,筛选出与分类紧密相关的特征子集;最后通过RVM分类学习对系统安全状态进行辨识。IEEE30节点系统测试结果表明,RVM方法的极度稀疏性、高分类精度、概率输出在实时安全状态感知中具有显著优越性。

References

[1]  Sikonja M,Kononenko I.Theoretical and empirical analysis of ReliefF and RRelief[J].Machine Learning,2003,53(1-2):23 - 69.
[2]  李扬,顾雪平.基于改进最大相关最小冗余判据的暂态稳定评估特征选择[J].中国电机工程学报,2013,33(34):179-186.Li Yang,Gu Xueping.Feature selection for transient stability assessment based on improved maximal relevance and minimal redundancy criterion [J].Proceedings of the CSEE,2013,33(34):179-186 (in Chinese).
[3]  Kira K,Rendell L.A practical approach to feature selection[C]// Proceedings of 9th International Conference on Machine Learning.Aberdeen,Scotland,UK:IMLS,1992:249-256.
[4]  PJM State & Member Training.How PJM operates and dispatches [R].Valley Forge,PA,USA:PJM,2013.
[5]  Pinson P,Kariniotakis G.Conditional prediction intervals of wind power generation[J].IEEE Transactions on Power Systems,2010,25(4):1845-1856.
[6]  Yun Fengwen,Chuangxin Guo,Daniel S K,et al.Enhanced security-constrained OPF with distributed battery energy storage[J].IEEE Transactions on Power Systems,to be published.
[7]  Zimmerman R D,Murillo-Sánchez C E,Thomas R J.Matpower: steady-state operations, planning and analysis tools for power systems research and education [J].IEEE Transactions on Power Systems,2011,26(1):12-19.
[8]  Guyon I,Elisseeff A.An introduction to variable and feature selection[J].Journal of Machine Learning Research,2003,3:1157-1182.
[9]  方勇杰.美国“9•8”大停电对连锁故障防控技术的启示大停电对连锁故障防控技术的启示[J].电力系统自动化,2012,36(15):1-7.Fang Yongjie.Lessons from September 8, 2011 Southwest America blackout for prevention and control of cascading outages[J].Automation of Electric Power Systems,2012,36(15):1-7 (in Chinese).
[10]  Diao Ruisheng,Vittal V,Logic N.Design of a real-time security assessment tool for situational awareness enhancement in modern power systems[J].IEEE Transactions on Power Systems,2010,25(2) :957-965.
[11]  Zhang Pei,Li Fangxing,Bhatt N.Next-generation monitoring, analysis, and control for the future smart control centre[J].IEEE Transactions on Smart Grid,2010,1(2):186-192.
[12]  He Miao,Vittal V,Zhang Junshan.Online dynamic security assessment with missing PMU measurements: a data mining approach[J].IEEE Transactions on Power Systems,2013,28(2):1969-1977.
[13]  Kamwa I,Samantaray S R,Joos G.Development of rule-based classifiers for rapid stability assessment of wide-area post-disturbance records[J].IEEE Transactions on Power Systems,2009,24(1):258-270.
[14]  顾伟,丁涛,杨自群,等.在线电压安全评估的多重动态决策树方法[J].中国电机工程学报,2011,31(31):142-148.Gu Wei,Ding Tao,Yang Ziqun,et al.Online voltage security assessment using multiple dynamic decision tree [J].Proceedings of the CSEE,2011,31(31):142-148 (in Chinese).
[15]  Jensen C A,El-Sharkawi M A,Marks R J.Power system security assessment using neural networks:feature selection using Fisher discrimination[J].IEEE Transactions on Power Systems,2001,16(4):757-763.
[16]  Amjady N,Banihashemi S A.Transient stability prediction of power systems by a new synchronism status index and hybrid classifier[J].IET Generation, Transmission and Distribution,2010,4(4):509-518.
[17]  姚德全,贾宏杰,赵帅.基于复合神经网络的电力系统暂态稳定评估和裕度预测[J].电力系统自动化,2013,37(20):41-46.Yao Dequan,Jia Hongjie,Zhao Shuai.Power system transient stability assessment and stability margin prediction based on compound neutral network [J].Automation of Electric Power Systems,2013,37(20):41-46 (in Chinese).
[18]  Xu Yan,Dong Zhaoyang,Zhao Junhua,et al.A reliable intelligent system for real-time dynamic security assessment of power systems[J].IEEE Transactions on Power Systems,2012,27(3):1253-1262.
[19]  Kalyani S,Shanti S S.Classification and assessment of power system security using multiclass SVM[J].IEEE Transactions on Systems,Man,and Cybernetics—Part C:Applications and Reviews,2011,41(5):753-758.
[20]  叶圣永,王晓茹,刘志刚,等.基于支持向量机的暂态稳定评估双阶段特征选择[J].中国电机工程学报,2010,30(31):28-34.Ye Shengyong,Wang Xiaoru,Liu Zhigang,et al.Dual stage feature selection for transient stability assessment based on support vector machine[J].Proceedings of the CSEE,2010,30(31):28-34 (in Chinese).
[21]  Cristianini N,Tylor J S.An introduction to support vector machines and other kernel based learning methods [M].London:Cambridge University Press,2000.
[22]  Tipping M E.Sparse Bayesian learning and the relevance vector machine[J].Journal of Machine Learning Research,2001(1):211-244.
[23]  Tipping M E,Faul A C.Fast marginal likelihood maximization for sparse Bayesian models[C]// Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics.Key West,FL,USA:Society for AI & Statistics,2003:1-8.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133