全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于离散滑模观测器的锂电池荷电状态估计

DOI: 10.13334/j.0258-8013.pcsee.2015.01.023, PP. 185-191

Keywords: 锂电池,荷电状态,离散滑模观测器,扩展卡尔曼滤波器

Full-Text   Cite this paper   Add to My Lib

Abstract:

锂电池的荷电状态(stateofcharge,SOC)估计是电池管理系统的重要组成部分,针对锂电池非线性的特性,提出了采用离散滑模观测器估计锂电池荷电状态的方法,给出了离散滑模观测器的设计方法及其稳定性证明。基于锂电池的戴维南等效电路模型,给出了该方法的设计过程,在不同的充放电电流倍率和环境温度下,进行了锂电池模型的参数辨识,通过与常用的扩展卡尔曼滤波法相比较,分析了离散滑模观测器对锂电池SOC估计的精度、鲁棒性和算法复杂度等方面的性能。实验结果表明,采用该算法可实现锂电池SOC快速精确地估计,误差可控制在约3%,验证了该方法的可行性。

References

[1]  林成涛,王军平,陈全世.电动汽车SOC估计方法原理与应用[J].电池,2004,34(5):376-378. Lin Chengtao,Wang Junping,Chen Quanshi.Methods for state of charge estimation of EV batteries and their application[J].Battery Bimonthly,2004,34(5):376-378(in Chinese).
[2]  雷肖,陈清泉,刘开培,等.电动车蓄电池荷电状态估计的神经网络方法[J].电工技术学报,2007,22(8):155-160. Lei Xiao,Chen Qingquan,Liu Kaipei,et al.Battery state of charge estimation basedon neural-network for electric vehicles[J].Transactions of China Electrotechnical Society,2007,22(8):155-160(in Chinese).
[3]  Plett G L.Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs part 1:Background[J].Journal of Power Sources,2004,134(2):252-261.
[4]  Plett G L.Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs part 2:Modeling and identification[J].Journal of Power Sources,2004,134(2):262-276.
[5]  Plett G L.Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs part 3:Parameter estimation[J].Journal of Power Sources,2004,134(2):277-292.
[6]  Shi Pu,Zhao Yiwen.Application of unscented Kalman filter in the SOC estimation of Li-ion battery for autonomous mobile robot[C]//Proceedings of the 2006 IEEE International Conference on Information Acquisition.Weihai,China:IEEE,2006:1279-1283.
[7]  Plett G L.Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 1:Introduction and state estimation[J].Journal of Power Sources,2006,161(2):1356-1368.
[8]  Plett G L.Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 2:Simultaneous state and parameter estimation[J].Journal of Power Sources,2006,161(2):1369-1384.
[9]  高明煜,何志伟,徐杰.基于采样点卡尔曼滤波的动力电池SOC估计[J].电工技术学报,2011,26(11):161-167. Gao Mingyu,He Zhiwei,Xu Jie.Sigma point Kalman filter based SOC estimation for power supply battery[J].Transactions of China Electrotechnical Society,2011,26(11):161-167(in Chinese).
[10]  魏克新,陈峭岩.基于多模型自适应卡尔曼滤波器的电动汽车电池荷电状态估计[J].中国电机工程学报,2012,32(31):19-26. Wei Kexin,Chen Qiaoyan.Electric vehicle battery SOC estimation based on multiple-model adaptive Kalman filter[J].Proceedings of the CSEE,2012,32(31):19-26(in Chinese).
[11]  Thein M W L.A discrete time variable structure observer with overlapping boundary layers[C]//Proceedings of the American Control Conference.Anchorage,AK:AACC,2002:2633-2638.
[12]  Thein M W L.A discrete time variable structure observer for uncertain systems with measurement noise[C]// Proceedings of the 41st IEEE Conference on Decision and Control.Las Vegas,Nevada USA:IEEE,2002:2582-2587.
[13]  Mihoub M,Nouri A S,Ben Abdennour R.A second order discrete sliding mode observer for the variable structure control of a semi-batch reactor[J].Control Engineering Practice,2011,19(10):1216-1222.
[14]  PNGV Battery Test Manual,Revision 3[M].Washington: US Department of Energy,2001:D1-D17.
[15]  Freedom CAR Battery Test manual,Revision 3[M].Washington:United States Idaho National Engineering and Environmental Laboratory,2003:D1-D21.
[16]  Hu Xiaosong,Li Shengbo,Peng Huei.A comparative study of equivalent circuit models for Li-ion batteries[J].Journal of Power Sources,2012(198):359-367.
[17]  Kim I S.The novel state of charge estimation method for lithium battery using sliding mode observer[J].Power Sources,2006,163(1):584-590.
[18]  Kim I S.A technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer[J].IEEE Transactions on Power Electronics,2010,25(4):1013-1022.
[19]  Li Jiahao,Barillas J K,Guenther C,et al.A comparative study of state of charge estimation algorithms for LiFePO 4 batteries used in electric vehicles[J].Journal of Power Sources,2013(230):244-250.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133