全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

槽式太阳能腔体式吸热器热力性能分析

DOI: 10.13334/j.0258-8013.pcsee.2015.01.016, PP. 126-132

Keywords: 槽式太阳能热发电,腔体式吸热器,二维稳态传热模型,超临界流体,R123,集热效率

Full-Text   Cite this paper   Add to My Lib

Abstract:

详述了适用于槽式太阳能中低温有机朗肯循环热发电系统的腔体式吸热器的结构形式和聚光原理;并应用TRACEPRO软件对该吸热器的光学特性进行了分析,证实了该吸热器能够可靠地接收太阳辐射;建立了该吸热器的二维稳态传热计算模型;选用R123作为工质,系统地分析了其在超临界工况下的辐照强度、工作压力、工质流量、环境风速以及保温层厚度等参数对热吸热器热力性能的影响规律。结果表明:吸热器在超临界工况下工作时,适当增加工质流量可以增大其吸热量并保证其安全稳定运行;增加入口压力会增加设备成本,并且不能提高吸热器的性能;合理的保温层厚度可以有效减少热损,使吸热器性能得到改善。研究结果可为设计和搭建腔体式吸热器实验台提供理论参考。

References

[1]  Price H,Lüpfert E,Kearney D.Advances in parabolic trough solar power technology[J].Journal of Solar Energy Engineering,2002,124(2):109-125.
[2]  郭苏,刘德有,张耀明,等.循环模式DSG槽式太阳能集热器出口蒸汽温度控制策略研究[J].中国电机工程学报,2012,32(20):62-68. Guo Su,Liu Deyou,Zhang Yaoming,et al.Research on control strategy of outlet steam temperature for DSG in parabolic troughs solar power under recirculation operation mode[J].Proceedings of the CSEE,2012,32(20):62-68(in Chinese).
[3]  王沛,刘德有,许昌,等.DSG槽式真空管内金属泡沫强化传热的数值研究[J].中国电机工程学报,2012,32(23):83-89. Wang Pei,Liu Deyou,Xu Chang,et al.Numerical research on enhanced heat transfer by inserting metal foams in the receiver tube of the DSG system [J].Proceedings of the CSEE,2012,32(23):83-89(in Chinese).
[4]  Tsoutsos T,Gekas V,Marketaki K.Technical and economical evaluation of solar thermal power generation[J].Renew Energy,2003,28(6):873-886.
[5]  Mills D.Advances in solar thermal electricity technology [J].Solar Energy,2004,76(1-3):19-31.
[6]  Rayegan R,Tao Y X.A procedure to select working fluids for Solar organic Rankine cycle[J].Renewable Energy,2011,36(2):659-670.
[7]  Wang J L,Zhao L,Wang X D.An experimental study on the recuperative low temperature solar Rankine cycle using R245fa[J].Applied Energy,2012(94):34-40.
[8]  Wang J L,Zhao L,Wang X D.A comparative study of pure and zeotropic mixtures in low-temperature solar Rankine cycle[J].Applied Energy,2010,87(11):3366-3373.
[9]  Agustín M,Delgado T,Lourdes G R.Analysis and optimization of the low temperature solar organic Rankine cycle[J].Energy Conversion and Management,2010,51(12):2846-2856.
[10]  Quoilin S,Orosz M,Hemond M.Performance and design optimization of a low-cost solar organic Rankine cycle for remote power generation[J].Solar Energy,2011,85(5):955-966:
[11]  Yamaguchi H,Zhang X R,Fujima K.Solar energy powered Rankine cycle using supercritical CO 2 [J].Applied Thermal Engineering,2006,26(17-18):2345-2354.
[12]  Zhang X R,Yamaguchi H,Cao Y H.Hydrogen production from solar energy powered supercritical cycle using carbon dioxide[J].International Journal of Hydrogen Energy,2010,35(10):4925-4932.
[13]  Rajinesh S,Sarah A,Millerb A S.Dynamic characteristics of a direct-heated supercritical carbon-dioxide Brayton cycle in a solar thermal power plant[J].Energy,2013,50(1):194-204.
[14]  Duffie J,Beckman W A.Solar engineering of thermal processes[M].New York:John Wiley and Sons Press,2006:327-337.
[15]  Dudley V,Kolb G,Keamey D.SEGS LS-2 solar collector:test result[R].New Mexico:Sandia National Laboratories,1994:A-4.
[16]  Price H.Concentrated solar power use in Africa[R].USA,Golden:National Renewable Energy Laboratory,2001.
[17]  Bejan A.Convection heat transfer[M].New York,John Wiley and Sons Press,2004:288-289.
[18]  Holman J P,Heat transfer[M].Singapore:McGraw Hill Companies,2002:400.
[19]  Yang S M.Heat Transfer[M].Xi’an:Higher Education Press,2003:173.
[20]  韩占忠,王国玉.工程流体力学基础[M].北京:北京理工大学出版社,2012:89. Han Zhanzhong,Wang Guoyu.Basis of engineering fluid mechanics[M].Beijing:Beijing Institute of Technology Press,2012:89(in Chinese).
[21]  Lemmon E W,Huber M L,McLinden M O.NIST reference fluid thermodynamic and transport properties- refprop[S].USA:NIST Standard Database 23,Version 8.0,2007.
[22]  García A F,Zarza E,Valenzuela L.Parabolic-trough solar collectors and their applications[J].Renewable and Sustainable Energy Reviews,2010,14(7):1695-1721.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133