全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于多模型自适应卡尔曼滤波器的电动汽车电池荷电状态估计

, PP. 19-26

Keywords: 电动汽车,荷电状态,健康状态,多模型自适应卡尔曼滤波器

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于电池的戴维宁(Thevenin)模型,设计了多模型自适应卡尔曼滤波器,并将多模型自适应卡尔曼滤波器应用于电动汽车电池荷电状态(state-of-charge,SOC)估计。由于老化电池是未知系统,利用传统的单一模型卡尔曼滤波器估计老化电池SOC时,因模型不准确而使估计误差增大。与单一模型滤波估计相比,多模型滤波估计融合了电池的各种老化信息,适合于未知系统的状态估计,从而提高了SOC的估计精度,并通过实验证明了上述结论的正确性。利用多模型自适应卡尔曼滤波器估计电池SOC,老化电池的模型与权值最大的单一模型较接近,根据单一模型权值可以近似估计出老化电池的健康状态(stateofhealth,SOH),并通过电池容量测量,证明了SOH估计的正确性。

References

[1]  Jossen A,Spath V,Doring H,et al. Reliable battery operation-a challenge for the battery management system[J]. Journal of Power Sources, 1999,84(2):283-286.
[2]  Plett G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 1 Background[J]. Journal of Power Sources, 2004,134(2):252-261.
[3]  戴海峰,孙泽昌,魏学哲. 利用双卡尔曼滤波算法估计电动汽车用锂离子动力电池的内部状态[J]. 机械工程学报, 2009,45(6):95-101. Dai Haifeng,Sun Zechang,Wei Xuezhe.Estimation of internal states of power lithium-ion batteries used on electric vehicles by dual extended kalman filter[J].Journal of Mechanical Engineering,2009,45(6)
[4]  Meissner E,Richter G. The challenge to the automotive battery industry:the battery has to become an increasingly integrated component within the vehicle electric power system[J]. Journal of Power Sources, 2005,144(2):438-460.
[5]  Ng K S,Moo C S,Chen Y P,et al. Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries[J]. Applied Energy, 2009,86(9):1506-1511.
[6]  Remmlinger J,Buchholz M,Meiler M,et al. State-of-health monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation [J]. Journal of Power Sources 2001, 196(12):5357-5363.
[7]  Rosario L,Luk P C K. Applying management methodology to electric vehicles with multiple energy storage systems[C]//Proceedings of the Sixth International Conference on Machine Learning and Cybernetics. Hong Kong, IEEE,2007:4223 - 4230.4223 - 4230.
[8]  Aylor J H,Thieme A,Johnson B W. A battery state of charge indicator for electric wheelchairs[J]. IEEE Trans. on Industrial Electronics, 1992,39(5):398-409.
[9]  Caumont O,Le Moigne P,Rombaut C,et al. Energy gauge for lead-acid batteries in electric vehicles[J]. IEEE Trans. on Energy Conversion, 2000,15(3):354-360.
[10]  裴锋,黄向东,罗玉涛,等. 电动汽车动力电池变流放电特性与荷电状态实时估计[J]. 中国电机工程学报.2005, 25(9):164-168. Pei Feng,Huang Xiangdong,Luo Yutao,et al.Variable current discharge characteristics and SOC estimation of EV/HEV battery[J].Proceedings of the CSEE,2005,25(9):164-168(in Chinese).
[11]  Karden E,Buller S,De Doncker R W. A method for measurement and interpretation of impedance spectra for industrial batteries[J]. Journal of Power Sources, 2000,85(1):72-78.
[12]  雷肖,陈清泉,刘开培,等. 电动车蓄电池荷电状态估计的支持向量机方法[J]. 中国电机工程学报, 2008,28(18):114-118. Lei Xiao,Chen Qingquan,Liu Kaipei,et al.Support vector machine based SOC estimation for electric vehicles[J].Proceedings of the CSEE,2008,28(18)
[13]  雷肖,陈清泉,刘开培,马历. 电动车电池SOC估计的径向基函数神经网络方法[J]. 电工技术学报, 2008,23(5):81-87. Lei Xiao,Chan C C,Liu Kai-pei,Ma Li.Radial-based-function neural network based SOC estimation for electric vehicles[J].Transactions of China Electrotechnical Society,2008,23(5)
[14]  Charkhgard M,Farrokhi M. State-of-charge estimation for lithium-ion batteries using neural networks and EKF[J]. IEEE Trans. on Industrial Electronics, 2010,57(12);4178-4187.
[15]  Plett G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs part 2 modeling and identification[J]. Journal of Power Sources, 2004,134(2):262-276.
[16]  Plett G L. Extended kalman filtering for battery management systems of LiPB-based HEV battery packs part 3 state and parameter estimation[J]. Journal of Power Sources, 2004,134(2):277-292.
[17]  Magrill D T. Optimal adaptive estimation of sampled stochastic processes[J]. IEEE Trans. Automatic Control, 1965,10(4):434-439.
[18]  任光,刘军,朱利民. 并行多参考模型卡尔曼滤波系统仿真研究[J]. 系统仿真学报, 2000,12(6):660-663. Ren Guang,Liu Jun,Zhu Li-min.Simulation study on parallel multiple-model kalman filter systems[J].Journal of System Simulation,2000,12(6)
[19]  Song S K,Kim K H. A dynamic state of charge model for electric vehicle batteries[C]//Proc. Elect.Vehicle Symp.Los Angeles, 1994:519-527.
[20]  全国汽车标准化技术委员会. QC/T 743-2006 中国标准书号[1580058. .北京:中国计划出版社, 2006.National Technical Committee of Auto Standardization.QC/T 743-2006 ISBN[1580058.762].Beijing:ChinaPlanning Press,2006(in Chinese).
[21]  Abraham D P,Knuth J L,Dees D W,etal. Performance degradation of high-power lithium-ion cells- electrochemistry of harvested electrodes[J]. Journal of Power Sources, 2007,170(2):465-475.
[22]  Gould C R,Bingham C M,Stone D A,Bentley P. Battery health determination by subspace parameter estimation and sliding mode control for an all-electric personal rapid transit vehicle-the ultra[C]//Power Electronics Specialists Conference. Rhodes:IEEE, 2008:4381-4385. 附录A 卡尔曼滤波递推算法如下:线性状态模型

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133