全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于高斯过程回归的短期风速预测

, PP. 104-109

Keywords: 高斯过程,风速时间序列,相空间重构,预测

Full-Text   Cite this paper   Add to My Lib

Abstract:

准确预测风速能有效减轻风电场对整个电网的不利影响,提高风电场在电力市场中的竞争能力。为了提高风速预测的精度,提出一种基于高斯过程(Gaussianprocesses,GP)的风速预测模型。首先运用自相关法和假近邻法分别求取风速时间序列的延迟时间和嵌入维数,进而对混沌风速时间序列进行相空间重构。其次运用GP模型对重构后的风速时间序列进行训练,同时在贝叶斯框架下,确定协方差函数中的“超参数”。最后利用训练好的GP模型风速时间序列进行预测,并与支持向量机、最小二乘支持向量机和BP神经网络进行比较。仿真结果表明,基于GP的风速预测模型具有很好的稳定性,能够满足预测精度的要求,具有很大的工程实际应用价值。

References

[1]  朱柯丁,宋艺航,谭忠富,等. 中国风电并网现状及风电节能减排效益[J].中国电力,2011,6(44):67-70.Zhu Keding,Song Yihang,Tan Zhongfu,et al.China wind power integration status quo and its benifit to energy saving and emission reduction[J].Electric Power,2011,6(44)
[2]  Fan Shu,Liao J R,Yokoyama R,et al. Forecasting the wind generation using a two-stage network based on meteorological information[J]. IEEE Transactions on Energy Conversion, 2009,24(2):474-482.
[3]  Damousis I G,Dokopoulos P. A fuzzy expert system for the forecasting of wind speed and power generation in wind farms[C]//IEEE Power Industry Computer Applications Conference,Sydney,NSW,2001.
[4]  Sanchez I. Short-term prediction of wind energy production[J]. International Journal of Forecasting, 2006,22(1):43-56.
[5]  Alexandre C,Antonio C,Jorge N,et al. A review on the young history of the wind power short-term prediction[J]. Renewable and Sustainable Energy Reviews, 2008,12(4):1725-1744.
[6]  Barthelmie R J,Murray F,Pryor S C. The economic benefit of short-term forecasting for wind energy in the UK electricity market[J]. Energy Policy, 2008,36(5):1687-1696.
[7]  张华,曾杰. 基于支持向量机的风速预测模型研究[J]. 太阳能学报, 2010,7(31):928-932. Zhang Hua,Zeng Jie.Wind speed forecasting model study based on support vector machine[J].Acta Energiae Solaris Sinica,2010,7(31)
[8]  黄小花,李德源,吕文阁,等. 基于人工神经网络模型的风速预测[J]. 太阳能学报, 2011,32(2):193-197. Huang Xiaohua,Li Deyuan,Lü Wenge,et al.Wind speed forecasting with artificial neural networks model[J].Acta Energiae Solaris Sinica,2011,32(2)
[9]  魏晓霞. 我国风电发展存在的问题和应对措施[J]. 电力技术经济, 2009,21(6):23-26. Wei Xiaoxia.Problems and the solution of wind power development in China[J].Electric Power Technology Economics,2009,21(6)
[10]  Alexiadis M,Dokopoulos P,Sahsamanoglou H,et al. Short term forecasting of wind speed and related electrical power[J]. Solar Energy, 1998,63(1):61-68.
[11]  Bossanyi E A. Short-term wind speed using Kalman filters[J]. Wind Engineering, 1985,9(1):1-7.
[12]  杨秀媛,肖洋,陈树勇. 风电场风速和发电功率预测研究[J]. 中国电机工程学报, 2005,25(11):1-5. Yang Xiuyuan,Xiao Yang,Chen Shuyong.Wind speed and generated power forecasting in wind farm [J].Proceedings of the CSEE,2005,25(11)
[13]  潘迪夫,刘辉,李燕飞. 基于时间序列分析和卡尔曼滤波算法的风电场风速预测优化模型[J]. 电网技术, 2008,32(7):82-86. Pan Difu,Liu Hui,Li Yanfei.A wind speed forecasting optimization model for wind farms based on time series analysis and Kalman filter algorithm[J].Power System Technology,2008,32(7)
[14]  Alexiadis M C,Dokopoulos P S,Sahsamanoglou H S. Short term forecasting of wind speed and related electrical power[J]. Solar Energy, 1998,63(1):61-68.
[15]  孙春顺,王耀南,李欣然. 小时风速的向量自回归模型及应用[J]. 中国电机工程学报, 2008,28(14):112-117. Sun Chunshun,Wang Yaonan,Li Xinran.A vector autoregression model of hourly wind speed and its applications in hourly wind speed forecasting [J].Proceedings of the CSEE,2008,28(14)
[16]  潘迪夫,刘辉,李燕飞. 风电场风速短期多步预测改进算法[J]. 中国电机工程学报, 2008,28(26):87-91. Pan Difu,Liu Hui,Li Yanfei.Optimization algorithm of short-term multi-step wind speed forecast[J].Proceedings of the CSEE,2008,28(26)
[17]  Kavasseri R G,Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models[J]. Renewable Energy, 2009,34(3):1388-1393.
[18]  Monfared M,Rastegar H,Kojabadi H M. A new strategy for wind speed forecasting using arti?cial intelligent methods[J]. Renewable Energy, 2009,34(5):845-848.
[19]  Cadenas E,Rivera W. Wind speed forecasting in three different regions of Mexico,using a hybrid ARIMA-ANN model[J]. 2010, 35(7):2732-2738.
[20]  Gong L,Shi Jing,Zhou Junyi. Bayesian adaptive combination of short-term wind speed forecasts from neural network models[J]. Renewable Energy, 2011,36(7):352-359.
[21]  Seeger M. Gaussian processes for machine learning[J]. International Journal of Neural System, 2004,14(2):69-106.
[22]  Rasmussen C E,Williams C K. I. Gaussian Processes for Machine Learning[M].Massachusetts:the MIT Press, 2006:7-31.
[23]  吕金虎,陆军安,陈士华. 混沌时间序列分析及应用[M]. 武汉:武汉大学出版社.2002:57-80. Lü Jinhu, Lu Jun?an,Chen Shihua.Chaotic time series analysis and application[M].Wuhan:WuhanUniversity Press,2002
[24]  杜颖,卢继平,李青,等. 基于最小二乘支持向量机的风电场短期风速预测[J]. 电网技术, 2008,32(15):62-66. Du Ying,Lu Jiping,Li Qing,et al.Short-term wind speed forecasting of wind farm based on least square-support vector machine[J].Power System Technology,2008,32(15)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133