全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

单边非质心驱动平面电机运动控制研究

, PP. 39-44

Keywords: 平面电机,单边非质心驱动,建模误差,非线性控制,轨迹跟踪

Full-Text   Cite this paper   Add to My Lib

Abstract:

与由四组线圈单元驱动方式相比,三组线圈单元驱动的平面电机属于单边非质心驱动模型。为提高平面电机系统的伺服性能,需要准确的力解耦模型以及有效的控制算法。由于实际中存在建模误差,如永磁体线圈加工误差引起的推力误差、气隙厚度不均匀、外部不确定扰动等,使得基于名义模型的系统无法有效解耦。同时建模误差的存在使得闭环系统误差方程的等号右侧不为0,无法确保跟踪误差的收敛。因此,必须利用控制器对建模误差进行补偿。以三组线圈单元且x方向为单边非质心驱动的平面电机作为研究对象。为提高其轨迹跟踪与定位能力,提出一种非线性控制算法。在逆动力学控制算法的基础上增加鲁棒项,对建模误差进行有效补偿。采用李雅普诺夫(Lyapunov)理论证明了该算法的稳定性。实验结果表明,轨迹跟踪误差小于1.5?m,可见通过对建模误差的补偿,减小了多自由度间耦合作用对运动精度的影响,提高了平面电机伺服性能。

References

[1]  Kim W J,Trumper D L. High-precision magnetic levitation stage for photolithography[J]. Precision Engineering, 1998,22(2):66-77.
[2]  Gao W,Dejima S,Yanai H,et al. A surface motor-driven planar motion stage integrated with an XYθz surface encode for precision positioning[J]. Precision Engineering, 2003,28(3):329-337.
[3]  黄学良,周赣,张前,等. 平面电机的海尔贝克型直线电机执行器[J]. 中国电机工程学报, 2009,29(21):80-81. Huang Xueliang,Zhou Gan,Zhang Qian,et al.Research on Halbach linear motor actuator of planar motor [J].Proceedings of the CSEE,2009,29(21)
[4]  曹家勇,朱煜,汪劲松,等. 平面电动机设计、控制与应用技术综述[J]. 电工技术学报, 2005,20(4):1-2. Cao Jiayong,Zhu Yu,Wang Jinsong,et al.Survey of the state of the art in planar motor technology[J].Transactions of China Electrotechnical Society,2005,20(4)
[5]  Min Wei. Analysis and optimization of a new 2-D magnet array for planar motor[J]. IEEE Transactions on Magnets, 2010,46(5):1167-1171.
[6]  马春燕,王振民,陈燕,等. 平面电动机发展现状[J]. 微电机, 2008,41(1):57-59. Ma Chunyan,Wang Zhenmin,Chen Yan,et al.Development of 2D planar motor and working principle[J].Micromotors Servo Technique,2008,41(1)
[7]  Cao Jiayong. Modeling the static vertical force of the core-type permanent-magnet planar motor[J]. IEEE Transactions on Magnetics, 2008,44(12):4653-4658.
[8]  Jung K S,Baek Y S. Precision stage using a non-contact planar actuator based on magnetic suspension technology [J]. Mechatronics, 2003,13(8-9):981-999.
[9]  Cho H S. Analysis and design of synchronous permanent- magnet planar motors[J]. IEEE Transactions on Energy Conversion, 2002,17(4):492-499.
[10]  Boeij J. Modeling ironless permanent-magnet planar actuator structures[J]. IEEE Transactions on Magnetics, 2006,42(8):2009-2016.
[11]  Jansen J W. Magnetically levitated planar actuator with moving magnets[J]. IEEE Transactions on Industry Applications, 2008,44(4):1108-1115.
[12]  Cornelis M M. Magnetically levitated planar actuator with moving magnets:dynamics,commutation and control design[D]. Einhoven:Technische University Einhoven, 2008.
[13]  Jansen J W. Magnetically levitated planar actuator with moving magnets:electromechanical analysis and design [D]. Einhoven:Technische University Einhoven, 2007.
[14]  Wang Hanlei,Xie Yongchun. Adaptive inverse dynamics control of robots with uncertain kinematics and dynamics [J]. Automatica, 2009,45(9):2114-2119.
[15]  Mistry M,Buchli J,Schaal S. Inverse dynamics control of floating base systems using orthogonal decomposition [C]//2010 IEEE International Conference on Robotics and Automation. Anchorage, AK,USA:IEEE,2010
[16]  Tar J k,Bito J F,Ruda I J. An SVD based modification of the adaptive inverse dynamics controller[J]. Applied Computational Intelligence and Informatics, 2009,3(4):193-198.
[17]  Freudenberg J,Middleton J,Stefanopoulou A. A survey of inherent design limitations[C]//Proceedings of the 2000 American Control Conference. Chicago, IL,USA:IEEE,2000
[18]  Freudenberg J,Hollot C V,Middleton R H,et al. Fundamental design limitations of the general control configuration[J]. IEEE Transactions on Automatic Control, 2003,48(8):1355-1370.
[19]  Arcak M,Larsen M,Kokotovic P. Boundedness without absolute stability in systems with stiffening nonlinearities [J]. European Journal of Control, 2003,8(3):243-250.
[20]  Ouyang P R,Zhang W J,Gupta M M. An adaptive switching learning control method for trajectory tracking of robot manipulators[J]. Mechatronics, 2006,16(1):51-61.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133