全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

压力和温度对用于燃料电池的微型反应器内甲烷自热重整特性的影响

, PP. 65-71

Keywords: 微型反应器,燃料电池,甲烷自热重整,压力,温度,积炭

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用CHEMKIN化学反应动力学软件及计算流体力学软件CFD等数值方法详细探讨了在微尺度内甲烷自热重整反应中温度和压力对出口组分摩尔分数的影响和催化壁面总积碳量的影响.结果表明,当温度超过873K,会促进水煤气转化反应的发生,导致氢气减少、水和一氧化碳增加,用于燃料电池的微型反应器内甲烷自热重整的温度不宜超过1000K,此时重整合成气中氢气的摩尔分数可达54.05%,一氧化碳的摩尔分数为9.98%;从能效、积炭和燃料电池的原料气的要求分析,用于燃料电池的微型反应器内甲烷自热重整的反应压力应低于1.8x105Pa;同时在1000K左右,积炭过程和消炭过程可到达一个平衡阶段,有利于催化剂寿命的延长。

References

[1]  Spadaccini C M,Mehra A,Zhang X,et al. High power density silicon combustion systems for micro gas turbine engines[J]. ASME Journal of Engineering for Gas Turbines and Power.2003, 125(7):709-719.
[2]  Jang L Q,Zhao D Q,Guo C M,et al. Experimental study of a plat-flame micro combustor burning DME for thermoelectric power generation[J]. Energy Conversion and Management, 2011,52(1):596-602.
[3]  Byung-il C,Yong-shik H,Myung-bae K,et al. Experimental and numerical studies of mixing and flame stability in a micro-cyclone combustor[J]. Chemical Engineering Science, 2009,64(24):5276-5286.
[4]  Shi L,Bayless D J,Prudich M E. A CFD model of autothermal reforming[J]. International Journal of Hydrogen Energy, 2009,34(18):7666-7675.
[5]  冉景煜,胡建红,张力,等. 微细腔内甲烷湿空气预混催化重整产氢特性[J]. 中国电机工程学报, 2007,27(8):42-48. Ran Jingyu,Hu Jianhong,Zhang Li,et al.Characteristics of generating hydrogen from Methane-wet air catalytic reforming reaction in the microcombustor[J].Proceeding of the CSEE,2007,27(8)
[6]  Ding O L,Chan S H. Water-gas shift assisted autothermal reforming of methane gas - transient and cold start studies[J]. International Journal of Hydrogen Energy, 2009,34(1):270-284.
[7]  Nahar G A. Hydrogen rich gas production by the autothermal reforming of biodiesel(FAME)for utilization in the solid-oxide fuel cells:A thermodynamic analysis[J]. International Journal of Hydrogen Energy, 2010,35(17):8891-8911.
[8]  李军伟,钟北京. 微细直管燃烧器的散热损失研究[J]. 中国电机工程学报, 2007,27(20):59-64. Li Junwei,Zhong Beijing.Investigation on Heat Loss of Microtube Combustor[J].Proceeding of the CSEE,2007,27(20)
[9]  闫云飞,张力,冉景煜. 催化壁面对微型燃烧腔内甲烷燃烧影响的数值模拟[J]. 重庆大学学报, 2009,32(10):1159-1164. Yan Yunfei,Zhang Li,Ran Jingyu.Numerical simulation of the influences of catalytic wall on methane combustion characteristics in micro-combustor[J].Journal of Chongqing University,2009,32(10)
[10]  Inyong K,Joongmyeon B. Autothermal reforming study of diesel for fuel cell application[J]. Journal of Power Sources, 2006,159(2):1283-1290.
[11]  Sandra C D,Janaína C E,Ricardo R S,et al. Effect of different promoters on Ni/CeZrO2 catalyst for autothermal reforming and partial oxidation of methane[J]. Chemical Engineering Journal, 2010,156(2):380-387.
[12]  Stutz Michael J,Poulikakos D. Effects of microreactor wall heat conduction on the reforming process of methane[J]. Chemical Engineering Science, 2005,60(24):6983-6997.
[13]  Zahedi nezhad M,Rowshanzamir S,Eikani M H. Autothermal reforming of methane to synthesis gas:Modeling and simulation[J]. International Journal of Hydrogen Energy, 2009,34(3):1292-1300.
[14]  Angelo B,Stefano C,Giampaolo M,et al. Methane steam reforming in a Pd-Ag membrane reformer:An experimental study on reaction pressure influence at middle temperature[J]. International Journal of Hydrogen Energy, 2011,36(2):1531-1539.
[15]  Hoang D L,Chan S H. Modeling of a catalytic autothermal methane reformer for fuel cell applications[J]. Applied Catalysis A:General, 2004,268(1-2):207-216.
[16]  Akbari M H,Sharafian Ardakani A H,Andisheh Tadbir M. A microreactor modeling,analysis and optim-ization for methane autothermal reforming in fuel cell applications[J]. Chemical Engineering Journal, 2011,166(3):1116-1125.
[17]  Faungnawakij K,Kikuchi R,Eguchi K. Thermodynamic analysis of carbon formation boundary and reforming performance for steam reforming of dimethyl Ether[J]. Journal of Power Sources, 2007,164(1):73-79.
[18]  李广龙,周利,王英旭,等. 直接内重整熔融碳酸盐燃料电池中甲烷蒸汽重整催化剂探索性研究[J]. 催化学报, 2011,32(1):106-110. Li Guanglong,Zhou Li,Wang Yingxu,el al.Pilot study on the use of methane steam reforming catalyst in molten carbonate fuel cell[J].Chinese Journal of Catalysis,2011,32(1)
[19]  Borgognoni F,Tosti S. Pd-Ag multi-membranes module for hydrogen production by methane auto-thermal reforming[J]. International Journal of Hydrogen Energy, 2012,37(2):1444-1453.
[20]  Rao Peela N,Kunzru D. Oxidative steam reforming of ethanol over Rh based catalysts in a micro-channel reactor[J]. International Journal of Hydrogen Energy, 2011,36(5):3384-3396.
[21]  Janardhanan V M,Deutschmann O. CFD analysis of a solid oxide fuel cell with internal reforming:Coupled interactions of transport,heterogeneous catalysis and electrochemical processes[J]. Journal of Power Sources.2006, 162(2):1192-1202.
[22]  董国兴,张鎏. Ni系水蒸气转化催化剂上积碳和消碳的机理探讨[J]. 催化学报, 1995,16(3):183-189. Dong Guoxing,Zhang Liu.Investigation on the coking and decoking mechanism on Ni catalysts for steam reforming of heptane[J].Chinese Journal of Catalysis.1995,16(3)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133