全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

带变流器负载的三相交流电源系统稳定性判据的研究

, PP. 143-148

Keywords: 稳定性判据,变流器负载,三相交流电源系统,奇异值,,-范数

Full-Text   Cite this paper   Add to My Lib

Abstract:

交流电源系统中的电力电子变流器一般恒功率运行,其三相交流输入端具有负阻抗特性,然而该特性可能使整个交流电源系统不稳定。从小信号分析的角度,带变流器负载的交流电源系统的稳定性由电源输出阻抗和负载输入导纳之间的关系决定,因此基于电源输出阻抗和负载输入导纳的稳定性判据是分析交流电源系统稳定性非常有效的方法。本文总结现有的4种交流电源系统稳定性判据,提出一种新型的基于阻抗矩阵?∞-范数的稳定性判据,并将提出的稳定性判据与现有的进行保守性比较。在现有的4种稳定性判据中,奇异值判据的保守性最小,但是奇异值的求取比较复杂。本文提出的基于阻抗矩阵?∞-范数的稳定性判据的保守性与奇异值判据相当,同时?∞-范数的求取比奇异值简便,可以用于分析三相交流电源系统的稳定性。

References

[1]  高朝晖,林晖,张晓斌. Boost 变换器带恒功率负载状态反馈精确线性化与最优跟踪控制技术研究[J]. 中国电机工程学报, 2007,27(13):70-75. Gao Zhaohui,Lin Hui,Zhang Xiaobin.Exact linearization and optirmal tarking control of boost converter with constant power load[J].Proceedings of the CSEE,2007,27(13)
[2]  Rahimi A,Emadi A. An analytic investigation of DC/DC power electronic converters with constant power loads in vehicular power systems[J]. IEEE Transactions on Power Electronics, 2009,68(6):2689-2702.
[3]  Rahimi A,Williamson A,Emadi A. Loop-cancellation technique:A novel nonlinear feedback to overcome the destabilizing effect of constant-power loads[J]. IEEE Transactions on Vehicle Technology, 2010,59(2):650-661.
[4]  Emadi A,Khaligh A,Rivetta C,et al. Constant power loads and negative impedance instability in automotive systems:Definition,modeling,stability,and control of power electronic converters and motor drives[J]. IEEE Transactions on Vehicle Technology, 2006,55(4):1112-1125.
[5]  刘欣博,周元钧. 具有双级LC 滤波器的恒功率负载系统在大扰动下的稳定性[J]. 中国电机工程学报, 2011,31(27):29-35. Liu Xinbo,Zhou Yuanjun.Large signal stability criteria for constant power loads with double-stage LC filters[J].Proceedings of the CSEE,2011,31(27)
[6]  王建华,张方华,龚春英. 带恒功率负载的DC/DC变换器阶跃响应过程分析[J]. 中国电机工程学报, 2008,28(30):7-11. Wang Jianhua,Zhang Fanghua,Gong Chunying.Step load response analysis of DC/DC converter with constant power load[J].Proceedings of the CSEE,2008,28(30)
[7]  Cespedes M,Beechner T,Lei X,et al. Stabilization of constant-power loads by passive impedance damping[C]//IEEE Applied Power Electronics Conference and Exposition. Palm Springs, USA:IEEE,2010:2174-2180.
[8]  Liu Xinyun,Forsyth A J,Cross A M. Negative input-resistance compensator for a constant power load[J]. IEEE Transactions on Industrial Electronics, 2007,54(6):3188-3196.
[9]  Cvetkovic I,Boroyevich D,Dong D,et al. Dynamic interactions in hybrid ac/dc electronic power distribution systems[C]//IEEE International Conference on Power Electronics and ECCE Asia. Jeju, Korea:IEEE,2011:2121-2128.
[10]  Chen Xin,Sun Jian. A study of renewable energy system harmonic resonance based on a DG test-bed[C]//IEEE Applied Power Electronics Conference and Exposition. Fort Worth, USA:IEEE,2011:995-1002.
[11]  Middlebrook R. Input filter considerations in design and application of switching regulators[C]//IEEE Industry Applications Society Annual Meeting. Chicago, USA:IEEE,1976:94-107.
[12]  Wildrick C,Lee F,Cho B,et al. A method of defining the load impedance specification for a stable distributed power system[J]. IEEE Transactions on Power Electronics, 1995,10(3):280-285.
[13]  Feng X,Liu J,Lee F. Impedance specifications for stable DC distributed power systems[J]. IEEE Transactions on Power Electronics, 2002,17(2):157-162.
[14]  Liu J,Feng X,Lee F. Stability margin monitoring for DC distributed power systems via perturbation approaches[J]. IEEE Transactions on Power Electronics, 2003,18(6):1254-1261.
[15]  Belkhayat M. Stability criteria for AC power systems with regulated loads[D]. Indiana:Purdue University, 1997.
[16]  Chandrasekaran S,Borojevic D,Lindner D. Input filter interaction in three phase AC-DC converters[C]//IEEE Power Electronics Specialists Conference. Charleston, USA:IEEE,1999:987-992.
[17]  Mao H,Boroyevich D,Lee F. Novel reduced-order small-signal model of a three-phase PWM rectifier and its application in control design and system analysis[J] IEEE Transactions on Power Electronics,1998,13(3):511-521.
[18]  Burgos R,Boroyevich D,Wang F,et al. On the Ac stability of high power factor three-phase rectifiers[C]// IEEE Energy Conversion Congress and Exposition. Atlanta, USA:IEEE,2010:2047-2054.
[19]  MacFarlane A,Postlethwaite I. The generalized Nyquist stability criterion and multivariable root loci[J]. International Journal of Control, 1977,25(1):81-127.
[20]  高黛陵,吴麒. 多变量频率域控制理论[M]. 北京:清华大学出版社, 1998:81-82. Gao Dailing,Wu Qi.Control theory of multivariable in frequency domain[M].Beijing:TsinghuaUniversity Press,1998

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133