全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

采用居民温控负荷控制的微网联络线功率波动平滑方法

, PP. 36-43

Keywords: 微网,联络线功率控制,可再生能源集成,需求响应,热控负荷

Full-Text   Cite this paper   Add to My Lib

Abstract:

风、光等可再生能源的输出具有间歇性、随机性等特点,会对电网造成不利影响。目前大多利用高成本的电储能系统抑制可再生能源功率波动,因此提出一种利用居民温控负荷控制技术的微网联络线功率平滑算法。采用简化1阶等值热力学参数(equivalentthermalparameter,ETP)模型来描述热泵热力学动态,在通信系统双向可靠的前提下,该功率平滑算法采用状态队列(state-queueing,SQ)模型控制热泵负荷开关状态。在社区级并网微网中,对1?000个家用电热泵设备进行仿真控制,结果表明热泵响应可以有效跟随平滑目标;通过对可再生能源渗透率、外部环境温度、热泵工作温度上下界等因素的灵敏度分析,可以看出不同因素对控制结果的影响。该方法为广义储能系统在微网中的应用提供了新的技术途径。

References

[1]  Consortium for Electric Reliability Technology Solutions. White paper on integration of distributed energy resources[R]. Berkeley, California:Consortium for Electric Reliability Technology Solutions (CERTS),2002.
[2]  Apt J. The spectrum of power from wind turbines[J]. Journal of Power Sources, 2007(169):369-374.
[3]  Lin J,Sun Y Z,Cheng L,et al. Assessment of the power reduction of wind farms under extreme wind condition by a high resolution simulation model[J]. Applied Energy, 2012(96):21-32.
[4]  Barton J,Infield D. Energy storage and its use with intermittent renewable energy[J]. IEEE Trans. on Energy Conversion, 2004,19(2):441-448.
[5]  Teleke S,Baran M E,Huang A Q,et al. Control strategies for battery energy storage for wind farm dispatching[J]. IEEE Trans. on Energy Conversion, 2009,24(3):725-732.
[6]  张钦,王锡凡,付敏,等. 需求响应视角下的智能电网[J]. 电力系统自动化, 2009,33(17):49-55. Zhang Qin,Wang Xifan,Fu Min,et a1.Smart grid from the perspective of demand response[J].Automation of Electric Power Systems,2009,33(17)
[7]  Department of Energy. Benefits of demand response in electricity markets and recommendations for achieving them:a report to the United State Congress pursuant to section 1252 of the Energy Policy Act of 2005[R]. Washington, DC:Department of Energy,2006.
[8]  Mcintyre J M,Ciecior L,Kaspar A,et al. Distributed intelligence in load control:results of an experiment using demand limiting devices for residential load control[J]. IEEE Trans. on Apparatus and Systems, 1985,104(5):1140-1146.
[9]  Chan M L,Crouch W H. An integrated load management,distribution automation and distribution SCADA system for old dominion electric cooperative[J]. IEEE Trans. on Power Delivery, 1990,5(1):384-390.
[10]  Lu N,Chassin D P. A state queueing model of thermostatically controlled appliances[J]. IEEE Trans. on Power Systems, 2004,19(3):1666-1673.
[11]  Lu N,Chassin D P,Widergren S E. Modeling uncertainties in aggregated thermostatically controlled loads using a state queueing model[J]. IEEE Trans. on Power Systems, 2005,20(2):725-733.
[12]  Callaway D. Tapping the energy storage potential in electric loads to deliver load following and regulation,with application to wind energy[J]. Energy Conversion and Management, 2009,50(9):184-199.
[13]  Parkinson S,Wang D,Crawford C,et al. Comfort-constrained distributed heat pump management [J]. Energy Procedia, 2012(12):849-855.
[14]  Wang D,Parkinson S,Miao W,et al. Online voltage security assessment considering comfort-constrained demand response control of distributed heat pump systems[J]. Applied Energy, 2012(96):104-114.
[15]  Lawrence Berkeley National Laboratory. Loads providing ancillary services:review of international experience,LBNL-62701[R]. Ernest Berkeley, California:Lawrence Berkeley National Laboratory,2007.
[16]  Oak Ridge National Laboratory. Spinning reserve from responsive loads[R]. Oak Ridge, Tennessee:Oak Ridge National Laboratory,2003.
[17]  Callaway D,Hiskens I. Achieving controllability of electric loads[J]. Proceedings of the IEEE, 2011,99(1):184-199.
[18]  Lu N. An evaluation of the HVAC load potential for providing load balancing service[J]. Accepted:IEEE Trans. on Smart Grid, 2012.DOI:10.1109/TSG.2012.2183649.
[19]  Pacific Northwest National Laboratory. Wide area energy storage and management system phase II final report-flywheel field tests[R]. Richland, Washington:Pacific Northwest National Laboratory,2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133