全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Perfusion MRI Study of Emotional Valence and Arousal in Parkinson’s Disease

DOI: 10.4061/2011/742907

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Brain regions subserving emotion have mostly been studied using functional magnetic resonance imaging (fMRI) during emotion provocation procedures in healthy participants. Objective. To identify neuroanatomical regions associated with spontaneous changes in emotional state over time. Methods. Self-rated emotional valence and arousal scores, and regional cerebral blood flow (rCBF) measured by perfusion MRI, were measured 4 or 8 times spanning at least 2 weeks in each of 21 subjects with Parkinson’s disease (PD). A random-effects SPM analysis, corrected for multiple comparisons, identified significant clusters of contiguous voxels in which rCBF varied with valence or arousal. Results. Emotional valence correlated positively with rCBF in several brain regions, including medial globus pallidus, orbital prefrontal cortex (PFC), and white matter near putamen, thalamus, insula, and medial PFC. Valence correlated negatively with rCBF in striatum, subgenual cingulate cortex, ventrolateral PFC, and precuneus—posterior cingulate cortex (PCC). Arousal correlated positively with rCBF in clusters including claustrum-thalamus-ventral striatum and inferior parietal lobule and correlated negatively in clusters including posterior insula—mediodorsal thalamus and midbrain. Conclusion. This study demonstrates that the temporal stability of perfusion MRI allows within-subject investigations of spontaneous fluctuations in mental state, such as mood, over relatively long-time intervals. 1. Background Even though Parkinson’s disease (PD) is a neurodegenerative disease defined by motor features [1], psychiatric sequelae are common such as depression, anxiety, and apathy [2, 3]. Previous studies have shown alteration of emotional processing in PD including reduced emotional physiologic response [4], impaired emotional word recognition [5], and impaired arousal judgment but normal valence [6]. The bulk of the evidence suggests that these changes result primarily from the degenerative process in the brain, and are not merely psychological reactions to disability [3]. Pathologically, Braak and Del Tredici [7] found that in PD clinical stages 1–3 (stage 4-5 pathologically), neurodegeneration could be seen in almost all areas of the brain including prefrontal cortex (PFC) and limbic system. Brain areas affected by PD that are hypothesized to cause emotional dysfunction including raphe nuclei, locus ceruleus, amygdala, mesolimbic, mesocortical, mesothalamic dopaminergic systems, and cingulate cortex [8]. Furthermore, neuroimaging studies have shown that a decrease in

References

[1]  D. Weintraub, C. L. Comella, and S. Horn, “Parkinson's disease—part 1: pathophysiology, symptoms, burden, diagnosis, and assessment,” American Journal of Managed Care, vol. 14, no. 2, pp. S40–S48, 2008.
[2]  I. H. Richard and R. Kurlan, “Anxiety and panic,” in Parkinson’s Disease: Diagnosis and Clinical Management, S. A. Factor and W. J. Weiner, Eds., pp. 179–188, Demos Medical Publishing, New York, NY, USA, 2008.
[3]  K. J. Black and A. Pandya, “Depression in Parkinson’s disease,” in Depression and Brain Dysfunction, F. G. Gilliam, A. M. Kanner, and Y. I. Sheline, Eds., pp. 199–237, Taylor & Francis Group, Oxon, UK, 2006.
[4]  M. Kawamura and M. Kobayakawa, “Emotional impairment in Parkinson’s disease,” Parkinsonism & Related Disorders, vol. 15, no. 1, pp. S47–S52, 2009.
[5]  A. Hillier, D. Q. Beversdorf, A. M. Raymer, D. J. G. Williamson, and K. M. Heilman, “Abnormal emotional word ratings in Parkinson's disease,” Neurocase, vol. 13, no. 2, pp. 81–85, 2007.
[6]  V. Drago, P. S. Foster, F. Skidmore, D. Trifiletti, and K. M. Heilman, “Spatial emotional akinesia in parkinson disease,” Cognitive and Behavioral Neurology, vol. 21, no. 2, pp. 92–97, 2008.
[7]  H. Braak and K. Del Tredici, “Invited article: nervous system pathology in sporadic Parkinson disease,” Neurology, vol. 70, no. 20, pp. 1916–1925, 2008.
[8]  A. E. Lang, “The progression of Parkinson disease: a hypothesis,” Neurology, vol. 68, no. 12, pp. 948–952, 2007.
[9]  M. Lotze, M. Reimold, U. Heymans, A. Laihinen, M. Patt, and U. Halsband, “Reduced ventrolateral fMRI response during observation of emotional gestures related to the degree of dopaminergic impairment in Parkinson disease,” Journal of Cognitive Neuroscience, vol. 21, no. 7, pp. 1321–1331, 2009.
[10]  M. Bradley, P. Lang, and B. N. Cuthbert, “International Affective Pictures System (IAPS): instruction manual and affective ratings. NIHM-Center for the study of emotion and attention,” University of Florida, 1999.
[11]  P. Bradley Mand Lang, “International Affective Digitized Sounds (IADS): instruction manual and affective ratings. NIHM-Center for the Study of Emotion and Attention,” University of Florida, 1999.
[12]  M. Bradley and P. Lang, “Affective Norms for English Words (ANEW). Instruction Manual and affective ratings,” Tech. Rep. C-1, Center for Research in Psychophysiology, University of Florida, 1999.
[13]  P. R. Goldin, C. A. C. Hutcherson, K. N. Ochsner, G. H. Glover, J. D. E. Gabrieli, and J. J. Gross, “The neural bases of amusement and sadness: a comparison of block contrast and subject-specific emotion intensity regression approaches,” NeuroImage, vol. 27, no. 1, pp. 26–36, 2005.
[14]  R. Stark, M. Zimmermann, S. Kagerer et al., “Hemodynamic brain correlates of disgust and fear ratings,” NeuroImage, vol. 37, no. 2, pp. 663–673, 2007.
[15]  K. J. Black, J. M. Koller, M. C. Campbell, D. A. Gusnard, and S. I. Bandak, “Quantification of indirect pathway inhibition by the adenosine A 2a antagonist SYN115 in Parkinson disease,” Journal of Neuroscience, vol. 30, no. 48, pp. 16284–16292, 2010.
[16]  K. J. Black, M. C. Campbell, W. Dickerson, et al., “A randomized, double-blind, placebo-controlled cross-over trial of the adenosine 2a antagonist SYN115 in Parkinson disease,” Neurology, vol. 74, supplement 2, p. A317, 2010.
[17]  S. Limsoontarakul, J. M. Koller, M. C. Campbell, and K. J. Black, “Emotional valence and arousal in Parkinson disease: an fMRI study,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 22, p. 244, 2010.
[18]  M. F. Folstein, S. E. Folstein, and P. R. McHugh, “Mini mental state. A practical method for grading the cognitive state of patients for the clinician,” Journal of Psychiatric Research, vol. 12, no. 3, pp. 189–198, 1975.
[19]  Wechsler Test of Adult Reading Manual, The Psychological Corporation, San Antonio, Tex, USA, 2001.
[20]  J. I. Sheikh and J. A. Yesavage, “Geriatric Depression Scale (GDS): recent evidence and development of a shorter version,” in Clinical Gerontology: A Guide to Assessment and Intervention, pp. 165–173, The Haworth Press, New York, NY, USA, 1986.
[21]  M. Gordon, J. Markham, J. M. Hartlein, J. M. Koller, S. Loftin, and K. J. Black, “Intravenous levodopa administration in humans based on a two-compartment kinetic model,” Journal of Neuroscience Methods, vol. 159, no. 2, pp. 300–307, 2007.
[22]  R. J. Larsen and E. Diener, “Promises and problems with the circumplex model of emotion,” in Review of Personality and Social Psychology, M. S. Clark, Ed., vol. 13, pp. 25–59, Sage, Newbury Park, Calif, USA, 1992.
[23]  M. F. Folstein and R. Luria, “Reliability, validity, and clinical application of the visual analogue mood scale,” Psychological Medicine, vol. 3, no. 4, pp. 479–486, 1973.
[24]  J. Wang, D. J. Licht, G. H. Jahng et al., “Pediatric perfusion imaging using pulsed arterial spin labeling,” Journal of Magnetic Resonance Imaging, vol. 18, no. 4, pp. 404–413, 2003.
[25]  R. N. A. Henson and W. D. Penny, “ANOVAs and SPM,” Tech. Rep., Wellcome Department of Imaging Neuroscience, 2003, http://www.fil.ion.ucl.ac.uk/~wpenny/publications/rik_anova.pdf.
[26]  J. L. Lancaster, M. G. Woldorff, L. M. Parsons et al., “Automated Talairach Atlas labels for functional brain mapping,” Human Brain Mapping, vol. 10, no. 3, pp. 120–131, 2000.
[27]  B. A. Racette, J. M. Hartlein, T. Hershey, J. W. Mink, J. S. Perlmutter, and K. J. Black, “Clinical features and comorbidity of mood fluctuations in Parkinson's disease,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 14, no. 4, pp. 438–442, 2002.
[28]  K. L. Phan, T. Wager, S. F. Taylor, and I. Liberzon, “Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI,” NeuroImage, vol. 16, no. 2, pp. 331–348, 2002.
[29]  K. L. Phan, T. D. Wager, S. F. Taylor, and I. Liberzon, “Functional neuroimaging studies of human emotions,” CNS Spectrums, vol. 9, no. 4, pp. 258–266, 2004.
[30]  L. M. Williams, P. Das, B. Liddell et al., “BOLD, sweat and fears: fMRI and skin conductance distinguish facial fear signals,” NeuroReport, vol. 16, no. 1, pp. 49–52, 2005.
[31]  J. L. Cummings, “Frontal-subcortical circuits and human behavior,” Archives of Neurology, vol. 50, no. 8, pp. 873–880, 1993.
[32]  C. Haegelen, D. García-Lorenzo, F. Le Jeune et al., “SPECT and PET analysis of subthalamic stimulation in Parkinson's disease: analysis using a manual segmentation,” Journal of Neurology, vol. 257, no. 3, pp. 375–382, 2010.
[33]  F. Le Jeune, D. Drapier, A. Bourguignon et al., “Subthalamic nucleus stimulation in Parkinson disease induces apathy: a PET study,” Neurology, vol. 73, no. 21, pp. 1746–1751, 2009.
[34]  K. H. Taber, C. Wen, A. Khan, and R. A. Hurley, “The limbic thalamus,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 16, no. 2, pp. 127–132, 2004.
[35]  S. Hamann and H. Mao, “Positive and negative emotional verbal stimuli elicit activity in the left amygdala,” NeuroReport, vol. 13, no. 1, pp. 15–19, 2002.
[36]  H. C. Breiter, N. L. Etcoff, P. J. Whalen et al., “Response and habituation of the human amygdala during visual processing of facial expression,” Neuron, vol. 17, no. 5, pp. 875–887, 1996.
[37]  E. A. Kensinger and D. L. Schacter, “Processing emotional pictures and words: effects of valence and arousal,” Cognitive, Affective and Behavioral Neuroscience, vol. 6, no. 2, pp. 110–126, 2006.
[38]  H. Kim, L. H. Somerville, T. Johnstone, A. L. Alexander, and P. J. Whalen, “Inverse amygdala and medial prefrontal cortex responses to surprised faces,” Neuroreport, vol. 14, no. 18, pp. 2317–2322, 2003.
[39]  H. Braak, J. R. Bohl, C. M. Müller, U. Rüb, R. A. I. de Vos, and K. Del Tredici, “Stanley Fahn lecture 2005: the staging procedure for the inclusion body pathology associated with sporadic Parkinson's disease reconsidered,” Movement Disorders, vol. 21, no. 12, pp. 2042–2051, 2006.
[40]  P. Remy, M. Doder, A. Lees, N. Turjanski, and D. Brooks, “Depression in Parkinson's disease: loss of dopamine and noradrenaline innervation in the limbic system,” Brain, vol. 128, no. 6, pp. 1314–1322, 2005.
[41]  A. Tessitore, A. R. Hariri, F. Fera et al., “Dopamine modulates the response of the human amygdala: a study in Parkinson's disease,” Journal of Neuroscience, vol. 22, no. 20, pp. 9099–9103, 2002.
[42]  G. Bush, P. Luu, and M. I. Posner, “Cognitive and emotional influences in anterior cingulate cortex,” Trends in Cognitive Sciences, vol. 4, no. 6, pp. 215–222, 2000.
[43]  W. C. Drevets, J. L. Price, J. R. Simpson Jr. et al., “Subgenual prefrontal cortex abnormalities in mood disorders,” Nature, vol. 386, no. 6627, pp. 824–827, 1997.
[44]  K. Yucel, M. C. McKinnon, R. Chahal et al., “Anterior cingulate volumes in never-treated patients with major depressive disorder,” Neuropsychopharmacology, vol. 33, no. 13, pp. 3157–3163, 2008.
[45]  A. M. Lozano, H. S. Mayberg, P. Giacobbe, C. Hamani, R. C. Craddock, and S. H. Kennedy, “Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression,” Biological Psychiatry, vol. 64, no. 6, pp. 461–467, 2008.
[46]  M. M. Bradley, M. K. Greenwald, M. C. Petry, and P. J. Lang, “Remembering pictures: pleasure and arousal in memory,” Journal of Experimental Psychology: Learning, Memory, and Cognition, vol. 18, no. 2, pp. 379–390, 1992.
[47]  R. J. Maddock, A. S. Garrett, and M. H. Buonocore, “Posterior cingulate cortex activation by emotional words: fMRI evidence from a valence decision task,” Human Brain Mapping, vol. 18, no. 1, pp. 30–41, 2003.
[48]  C. J. Bench, K. J. Friston, R. G. Brown, L. C. Scott, R. S. J. Frackowiak, and R. J. Dolan, “The anatomy of melancholia—focal abnormalities of cerebral blood flow in major depression,” Psychological Medicine, vol. 22, no. 3, pp. 607–615, 1992.
[49]  D. Perani, C. Colombo, S. Bressi et al., “[18F]FDG PET study in obsessive-compulsive disorder. A clinical/metabolic correlation study after treatment,” British Journal of Psychiatry, vol. 166, pp. 244–250, 1995.
[50]  K. J. Black, T. Hershey, J. M. Hartlein, J. L. Carl, and J. S. Perlmutter, “Levodopa challenge neuroimaging of levodopa-related mood fluctuations in Parkinson's disease,” Neuropsychopharmacology, vol. 30, no. 3, pp. 590–601, 2005.
[51]  M. M. A. Nielen, D. J. Heslenfeld, K. Heinen et al., “Distinct brain systems underlie the processing of valence and arousal of affective pictures,” Brain and Cognition, vol. 71, no. 3, pp. 387–396, 2009.
[52]  T. Sharot and E. A. Phelps, “How arousal modulates memory: disentangling the effects of attention and retention,” Cognitive, Affective and Behavioral Neuroscience, vol. 4, no. 3, pp. 294–306, 2004.
[53]  J. Mour?o-Miranda, E. Volchan, J. Moll et al., “Contributions of stimulus valence and arousal to visual activation during emotional perception,” NeuroImage, vol. 20, no. 4, pp. 1955–1963, 2003.
[54]  R. D. Lane, P. M. L. Chua, and R. J. Dolan, “Common effects of emotional valence, arousal and attention on neural activation during visual processing of pictures,” Neuropsychologia, vol. 37, no. 9, pp. 989–997, 1999.
[55]  G. Pourtois, S. Schwartz, M. L. Seghier, F. Lazeyras, and P. Vuilleumier, “Neural systems for orienting attention to the location of threat signals: an event-related fMRI study,” NeuroImage, vol. 31, no. 2, pp. 920–933, 2006.
[56]  P. Vuilleumier, “How brains beware: neural mechanisms of emotional attention,” Trends in Cognitive Sciences, vol. 9, no. 12, pp. 585–594, 2005.
[57]  K. Oatley, D. Keltner, and J. M. Jenkins, Understanding Emotions, Blackwell, Malden, Mass, USA, 2nd edition, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133