Coexistent impairments in executive functions and language comprehension in patients with Parkinson's disease (PD) have been repeatedly observed. In this study, the aim was to provide insights into the interaction between linguistic representation and processing and executive functioning. Therefore, sentence comprehension and executive functions were assessed in 28 Dutch-speaking PD patients and 28 healthy control subjects. Three aspects of the sentence materials were varied: (1) phrase structure complexity, (2) sentence length, and (3) picture congruence. PD patients with mild-to-moderate disease severity showed decreased sentence comprehension compared to healthy control subjects. The difficulties encountered by PD patients were not limited to one aspect of the sentence materials. The same pattern of results was present in healthy control subjects. Deficits in set-switching were specifically associated with the comprehension of passive sentences. Generally, our study confirms that there does not appear to be a language faculty encapsulated from the influence of executive functions. 1. Introduction In Parkinson’s disease (PD), the components of the cortico-striato-cortical circuits are not in optimal interaction. Motor symptoms of tremor, bradykinesia, and rigidity are the clinical hallmark of the disease [1]. However, nonmotor symptoms are often present [2]. In particular, cognitive impairments in the domain of executive functioning have frequently been observed even in very early stages of PD [3]. Additionally, several independent researchers have demonstrated a sentence comprehension deficit in PD patients suggesting the involvement of the cortico-striato-cortical circuits in language processing. Since the early 1990s, a number of studies have revealed that long sentences and complex syntactic structures (i.e., noncanonical structures) are vulnerable in individuals with PD (see [4, 5] for a review). There is, however, no consensus concerning the functional basis of the sentence comprehension impairment in PD. Some authors attribute the sentence comprehension deficit to an impairment of grammatical processing as such [6–9]. This viewpoint suggests that linguistic deficits in PD will affect specific aspects of language structure, as in aphasia. Other researchers, however, suggest that executive dysfunction(s) are the functional basis of the sentence comprehension difficulties in PD. This viewpoint suggests that language processing deficits in PD are always associated with executive function deficits. Under this latter view, the language faculty is not
References
[1]
E. C. Wolters and J. L. W. Bosboom, “Parkinson's disease,” in Parkinsonism and Related Disorders, E. C. Wolters, T. van Laar, and H. W. Berendse, Eds., pp. 143–158, VU University Press, Amsterdam, the Netherlands, 2007.
[2]
B. Dubois and B. Pillon, “Cognitive deficits in Parkinson's disease,” Journal of Neurology, vol. 244, no. 1, pp. 2–8, 1997.
[3]
D. Muslimovi?, B. Post, J. D. Speelman, and B. Schmand, “Cognitive profile of patients with newly diagnosed Parkinson disease,” Neurology, vol. 65, no. 8, pp. 1239–1245, 2005.
[4]
M. Grossman, “Sentence processing in Parkinson's disease,” Brain and Cognition, vol. 40, no. 2, pp. 387–413, 1999.
[5]
L. L. Murray, “Language and Parkinson's disease,” Annual Review of Applied Linguistics, vol. 28, pp. 113–127, 2008.
[6]
H. Cohen, S. Bouchard, P. Scherzer, and H. Whitaker, “Language and verbal reasoning in Parkinson's disease,” Neuropsychiatry, Neuropsychology and Behavioral Neurology, vol. 7, no. 3, pp. 166–175, 1994.
[7]
P. Lieberman, J. Friedman, and L. S. Feldman, “Syntax comprehension deficits in Parkinson's disease,” Journal of Nervous and Mental Disease, vol. 178, no. 6, pp. 360–365, 1990.
[8]
D. Natsopoulos, G. Grouios, S. Bostantzopoulou, G. Mentenopoulos, Z. Katsarou, and J. Logothetis, “Algorithmic and heuristic strategies in comprehension of complement clauses by patients with Parkinson's disease,” Neuropsychologia, vol. 31, no. 9, pp. 951–964, 1993.
[9]
D. Natsopoulos, Z. Katsarou, S. Bostantzopoulou, G. Grouios, G. Mentenopoulos, and J. Logothetis, “Strategies in comprehension of relative clauses by Parkinsonian patients,” Cortex, vol. 27, no. 2, pp. 255–268, 1991.
[10]
K. S. F. Colman, J. Koerts, M. van Beilen, K. L. Leenders, and R. Bastiaanse, “The role of cognitive mechanisms in sentence comprehension in Dutch speaking Parkinson's disease patients: preliminary data,” Brain and Language, vol. 99, no. 1-2, pp. 109–110, 2006.
[11]
J. Hochstadt, “Set-shifting and the on-line processing of relative clauses in Parkinson's disease: results from a novel eye-tracking method,” Cortex, vol. 45, no. 8, pp. 991–1011, 2009.
[12]
J. Hochstadt, H. Nakano, P. Lieberman, and J. Friedman, “The roles of sequencing and verbal working memory in sentence comprehension deficits in Parkinson's disease,” Brain and Language, vol. 97, no. 3, pp. 243–257, 2006.
[13]
P. Lieberman, Human Language and Our Reptilian Brain: The Subcortical Bases of Speech, Syntax, and Thought, Harvard University Press, Cambridge, Mass, USA, 2000.
[14]
P. Lieberman, “On the nature and evolution of the neural bases of human language,” American Journal of Physical Anthropology, vol. 119, supplement 35, pp. 36–62, 2002.
[15]
P. Lieberman, Toward an Evolutionary Biology of Language, The Belknap Press of Harvard University Press, Cambridge, Mass, USA, 2006.
[16]
P. Lieberman, “The evolution of human speech: its anatomical and neural bases,” Current Anthropology, vol. 48, no. 1, pp. 39–66, 2007.
[17]
C. E. Longworth, S. E. Keenan, R. A. Barker, W. D. Marslen-Wilson, and L. K. Tyler, “The basal ganglia and rule-governed language use: evidence from vascular and degenerative conditions,” Brain, vol. 128, no. 3, pp. 584–596, 2005.
[18]
M. Grossman, C. Lee, J. Morris, M. B. Stern, and H. I. Hurtig, “Assessing resource demands during sentence processing in Parkinson's disease,” Brain and Language, vol. 80, no. 3, pp. 603–616, 2002.
[19]
M. Grossman, E. Zurif, C. Lee et al., “Information processing speed and sentence comprehension in Parkinson's disease,” Neuropsychology, vol. 16, no. 2, pp. 174–181, 2002.
[20]
C. Lee, M. Grossman, J. Morris, M. B. Stern, and H. I. Hurtig, “Attentional resource and processing speed limitations during sentence processing in Parkinson's disease,” Brain and Language, vol. 85, no. 3, pp. 347–356, 2003.
[21]
M. Grossman, A. Cooke, C. DeVita et al., “Grammatical and resource components of sentence processing in Parkinson's disease: an fMRI study,” Neurology, vol. 60, no. 5, pp. 775–781, 2003.
[22]
D. Caplan and G. S. Waters, “Verbal working memory and sentence comprehension,” Behavioral and Brain Sciences, vol. 22, no. 1, pp. 77–126, 1999.
[23]
R. L. Skeel, B. Crosson, S. E. Nadeau, J. Algina, R. M. Bauer, and E. B. Fennell, “Basal ganglia dysfunction, working memory, and sentence comprehension in patients with Parkinson's disease,” Neuropsychologia, vol. 39, no. 9, pp. 962–971, 2001.
[24]
J. Hochstadt, From gaze shifts to set shifts: using eye-tracking during sentence—picture matching to link deficits in language comprehension and cognition in Parkinson’s disease, Ph.D. thesis, Brown University, Providence, RI, USA, 2004.
[25]
P. Lieberman, E. Kako, J. Friedman, G. Tajchman, L. S. Feldman, and E. B. Jiminez, “Speech production, syntax comprehension, and cognitive deficits in Parkinson's disease,” Brain and Language, vol. 43, no. 2, pp. 169–189, 1992.
[26]
R. Cools, R. A. Barker, B. J. Sahakian, and T. W. Robbins, “Mechanisms of cognitive set flexibility in Parkinson's disease,” Brain, vol. 124, no. 12, pp. 2503–2512, 2001.
[27]
A. D. Baddeley and G. J. Hitch, “Working memory,” in The Psychology of Learning and Motivation: Advances in Research and Theory, G. H. Bower, Ed., vol. 8, pp. 47–89, Academic Press, New York, NY, USA, 1974.
[28]
Y. Grodzinsky, “The neurology of syntax: language use without Broca's area,” Behavioral and Brain Sciences, vol. 23, no. 1, pp. 1–21, 2000.
[29]
P. F. Dominey, M. Hoen, J. M. Blanc, and T. Lelekov-Boissard, “Neurological basis of language and sequential cognition: evidence from simulation, aphasia, and ERP studies,” Brain and Language, vol. 86, no. 2, pp. 207–225, 2003.
[30]
K. S. Lashley, “The problem of serial order in behavior,” in Cerebral Mechanisms in Behavior, L. A. Jeffress, Ed., pp. 112–131, Wiley, New York, NY, USA, 1951.
[31]
L. Godbout and J. Doyon, “Defective representation of knowledge in Parkinson's disease: evidence from a script-production task,” Brain and Cognition, vol. 44, no. 3, pp. 490–510, 2000.
[32]
E. Gibson, “Linguistic complexity: locality of syntactic dependencies,” Cognition, vol. 68, no. 1, pp. 1–76, 1998.
[33]
R. C. Martin and E. Feher, “The consequences of reduced memory span for the comprehension of semantic versus syntactic information,” Brain and Language, vol. 38, no. 1, pp. 1–20, 1990.
[34]
J. Koerts, M. A. J. P. Borg, A. M. Meppelink, K. L. Leenders, M. van Beilen, and T. van Laar, “Attentional and perceptual impairments in Parkinson's disease with visual hallucinations,” Parkinsonism and Related Disorders, vol. 16, no. 4, pp. 270–274, 2010.
[35]
S. Fahn and R. L. Elton, “Unified Parkinson's disease rating scale,” in Recent Developments in Parkinson's Disease, S. Fahn, C. D. Marsden, M. Goldstein, and D. B. Calne, Eds., pp. 153–163, Macmillan Healthcare Information Florham Park N. J., 1987.
[36]
M. M. Hoehn and M. D. Yahr, “Parkinsonism: onset, progression and mortality,” Neurology, vol. 17, no. 5, pp. 427–442, 1967.
[37]
R. A. J. Esselink, R. M. A. De Bie, R. J. De Haan et al., “Unilateral pallidotomy versus bilateral subthalamic nucleus stimulation in PD: a randomized trial,” Neurology, vol. 62, no. 2, pp. 201–207, 2004.
[38]
M. F. Folstein, S. E. Folstein, and P. R. McHugh, “Mini mental state—a practical method for grading the cognitive state of patients for the clinician,” Journal of Psychiatric Research, vol. 12, no. 3, pp. 189–198, 1975.
[39]
S. A. Montgomery and M. Asberg, “A new depression scale designed to be sensitive to change,” British Journal of Psychiatry, vol. 134, no. 4, pp. 382–389, 1979.
[40]
A. F. Leentjens, F. R. Verhey, R. Lousberg, H. Spitsbergen, and F. W. Wilmink, “The validity of the Hamilton and Montgomery-Asberg depression rating scales as screening and diagnostic tools for depression in Parkinson's disease,” International Journal of Geriatric Psychiatry, vol. 15, no. 7, pp. 644–649, 2000.
[41]
H. R. Baayen, R. Piepenbrock, and H. Van Rijn, The CELEX lexical database [CD-rom], 1993.
[42]
P. Zimmerman and B. Fimm, Testbattery of Attentional Performances (TAP), 2000.
[43]
R. M. Reitan, “Trail making test: manual for administration and scoring,” 1992.
[44]
K. A. Flowers and C. Robertson, “The effect of Parkinson's disease on the ability to maintain a mental set,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 48, no. 6, pp. 517–529, 1985.
[45]
J. R. Stroop, “Studies of interference in serial verbal reactions,” Journal of Experimental Psychology, vol. 18, no. 6, pp. 643–662, 1935.
[46]
J. Stinissen, P. J. Willems, P. Coetsier, and W. L. L. Hulsman, Handleiding bij de Nederlandse Bewerking van de Wechsler Adult Intelligence Scale (WAIS), 1970.
[47]
T. Lelekov, N. Franck, P. F. Dominey, and N. Georgieff, “Cognitive sequence processing and comprehension in schizophrenia,” NeuroReport, vol. 11, no. 10, pp. 2145–2149, 2000.
[48]
K. S. F. Colman, J. Koerts, M. van Beilen, K. L. Leenders, W. J. Post, and R. Bastiaanse, “The impact of executive functions on verb production in patients with Parkinson's disease,” Cortex, vol. 45, no. 8, pp. 930–942, 2009.
[49]
D. S. Moore and G. P. MacCabe, Introduction to the practice of statistics, Freeman, New York, NY, USA, 5th edition, 2006.
[50]
T. A. Salthouse, “When does age-related cognitive decline begin?” Neurobiology of Aging, vol. 30, no. 4, pp. 507–514, 2009.
[51]
C. H. Williams-Gray, T. Foltynie, C. E. G. Brayne, T. W. Robbins, and R. A. Barker, “Evolution of cognitive dysfunction in an incident Parkinson's disease cohort,” Brain, vol. 130, no. 7, pp. 1787–1798, 2007.
[52]
M. Grossman, S. Carvell, M. B. Stern, S. Gollomp, and H. I. Hurtig, “Sentence comprehension in Parkinson's disease: the role of attention and memory,” Brain and Language, vol. 42, no. 4, pp. 347–384, 1992.
[53]
R. S. Wilson, L. A. Beckett, L. L. Barnes et al., “Individual differences in rates of change in cognitive abilities of older persons,” Psychology and Aging, vol. 17, no. 2, pp. 179–193, 2002.
[54]
R. Cools, R. A. Barker, B. J. Sahakian, and T. W. Robbins, “Mechanisms of cognitive set flexibility in Parkinson's disease,” Brain, vol. 124, no. 12, pp. 2503–2512, 2001.
[55]
R. Cools, R. A. Barker, B. J. Sahakian, and T. W. Robbins, “L-Dopa medication remediates cognitive inflexibility, but increases impulsivity in patients with Parkinson's disease,” Neuropsychologia, vol. 41, no. 11, pp. 1431–1441, 2003.
[56]
M. Grossman, G. Glosser, J. Kalmanson, J. Morris, M. B. Stern, and H. I. Hurtig, “Dopamine supports sentence comprehension in Parkinson's disease,” Journal of the Neurological Sciences, vol. 184, no. 2, pp. 123–130, 2001.