Neural cell transplantation and gene therapy have attracted considerable interest as promising therapeutic alternatives for patients with Parkinson's disease (PD). Preclinical and open-label studies have suggested that grafted fetal neural tissue or viral vector gene transfer can achieve considerable biochemical and clinical improvements, whereas subsequent double-blind, placebo-controlled protocols have produced rather more modest and variable results. Detailed evaluation of these discordant findings has highlighted several crucial issues such as patient selection criteria, details surrounding transplantation or gene therapy methodologies, as well as the study designs themselves that ought to be carefully considered in the planning phases of future clinical trials. Beyond the provision of symptomatic efficacy and safety data, it also remains to be identified whether the possibilities offered by stem cell and gene therapy technological advances might translate to meaningful neuroprotection and/or disease-modifying effects or alleviate the nonmotor aspects of PD and thus offer additional benefits beyond those achieved through conventional pharmacotherapy or deep brain stimulation (DBS). 1. Introduction Current antiparkinsonian oral drug therapies, with the dopamine (DA) precursor levodopa (L-dopa) remaining the most effective, allow remarkable symptomatic control over the cardinal motor features of Parkinson’s disease (PD) in the first years after diagnosis, by restoring the characteristic nigrostriatal DA deficit. Unfortunately, the pharmacotherapeutic window shrinks over time, and treatment is complicated by the onset of motor fluctuations (“ON/OFF” phenomena) and L-dopa induced dyskinesias (LIDs), while signs such as balance disorders, gait freezing, autonomic disturbances, dementia, or affective changes, refractory to dopaminergic substitution, appear [1–3]. Continuous delivery of the DA agonist apomorphine (subcutaneously) or L-dopa (intraduodenally) and surgical strategies such as deep brain stimulation (DBS) provide relief in advanced PD patients with severe motor complications [4–6]. These therapeutic advances, nevertheless, do not influence the underlying neurodegenerative process and have limited effects on L-dopa nonresponsive clinical manifestations, which are now clearly recognized as causes of major disability in late-stage PD [3, 7, 8]. Hence, there is a pressing demand for innovative approaches. Cell replacement therapies and gene transfer through viral vectors into the degenerated host brain have been investigated as alternatives to
References
[1]
N. Quinn, “Diagnosis and treatment of Parkinson's disease,” British Medical Journal, vol. 310, no. 6995, pp. 575–579, 1995.
[2]
E. Bezard, J. M. Brotchie, and C. E. Gross, “Pathophysiology of levodopa-induced dyskinesia: potential for new therapies,” Nature Reviews Neuroscience, vol. 2, no. 8, pp. 577–588, 2001.
[3]
A. E. Lang and J. A. Obeso, “Challenges in Parkinson's disease: restoration of the nigrostriatal dopamine system is not enough,” Lancet Neurology, vol. 3, no. 5, pp. 309–316, 2004.
[4]
P. J. Garcia Ruiz, et al., “Efficacy of long-term continuous subcutaneous apomorphine infusion in advanced Parkinson's disease with motor fluctuations: a multicenter study,” Movement Disorders, vol. 23, no. 8, pp. 1130–1136, 2008.
[5]
D. Nyholm, A. I. M. Nilsson Remahl, N. Dizdar et al., “Duodenal levodopa infusion monotherapy vs oral polypharmacy in advanced Parkinson disease,” Neurology, vol. 64, no. 2, pp. 216–223, 2005.
[6]
P. Krack, A. Batir, N. van Blercom et al., “Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced parkinson's disease,” New England Journal of Medicine, vol. 349, no. 20, pp. 1925–1934, 2003.
[7]
P. D. Charles, C. E. Gill, T. L. Davis, P. E. Konrad, and A. L. Benabid, “Is deep brain stimulation neuroprotective if applied early in the course of PD?” Nature Clinical Practice Neurology, vol. 4, no. 8, pp. 424–426, 2008.
[8]
K. R. Chaudhuri and A. H. Schapira, “Non-motor symptoms of Parkinson's disease: dopaminergic pathophysiology and treatment,” The Lancet Neurology, vol. 8, no. 5, pp. 464–474, 2009.
[9]
O. Lindvall, P. Brundin, H. Widner et al., “Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease,” Science, vol. 247, no. 4942, pp. 574–577, 1990.
[10]
C. R. Freed, R. E. Breeze, N. L. Rosenberg et al., “Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson's disease,” New England Journal of Medicine, vol. 327, no. 22, pp. 1549–1555, 1992.
[11]
O. Lindvall, G. Sawle, H. Widner et al., “Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson's disease,” Annals of Neurology, vol. 35, no. 2, pp. 172–180, 1994.
[12]
C. R. Freed, P. E. Greene, R. E. Breeze et al., “Transplantation of embryonic dopamine neurons for severe Parkinson's disease,” New England Journal of Medicine, vol. 344, no. 10, pp. 710–719, 2001.
[13]
C. W. Olanow, C. G. Goetz, J. H. Kordower et al., “A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease,” Annals of Neurology, vol. 54, no. 3, pp. 403–414, 2003.
[14]
J. H. Kordower, Y. Chu, R. A. Hauser, T. B. Freeman, and C. W. Olanow, “Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson's disease,” Nature Medicine, vol. 14, no. 5, pp. 504–506, 2008.
[15]
J. Y. Li, E. Englund, J. L. Holton et al., “Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation,” Nature Medicine, vol. 14, no. 5, pp. 501–503, 2008.
[16]
J. Y. Li, E. Englund, H. Widner et al., “Characterization of Lewy body pathology in 12- and 16-year-old intrastriatal mesencephalic grafts surviving in a patient with Parkinson's disease,” Movement Disorders, vol. 25, no. 8, pp. 1091–1096, 2010.
[17]
M. Yilong, C. Tang, T. Chaly et al., “Dopamine cell implantation in Parkinson's disease: long-term clinical and18F-FDOPA PET outcomes,” Journal of Nuclear Medicine, vol. 51, no. 1, pp. 7–15, 2010.
[18]
P. Piccini, N. Pavese, P. Hagell et al., “Factors affecting the clinical outcome after neural transplantation in Parkinson's disease,” Brain, vol. 128, no. 12, pp. 2977–2986, 2005.
[19]
C. Winkler, D. Kirik, and A. Bj?rklund, “Cell transplantation in Parkinson's disease: how can we make it work?” Trends in Neurosciences, vol. 28, no. 2, pp. 86–92, 2005.
[20]
P. Brundin, O. Pogarell, P. Hagell et al., “Bilateral caudate and putamen grafts of embryonic mesencephalic tissue treated with lazaroids in Parkinson's disease,” Brain, vol. 123, no. 7, pp. 1380–1390, 2000.
[21]
M. Politis, K. Wu, C. Loane et al., “Serotonergic neurons mediate dyskinesia side effects in Parkinson's patients with neural transplants,” Science Translational Medicine, vol. 2, no. 38, Article ID 38ra46, 2010.
[22]
W. J. Freed, M. Poltorak, and J. B. Becker, “Intracerebral adrenal medulla grafts: a review,” Experimental Neurology, vol. 110, no. 2, pp. 139–166, 1990.
[23]
C. G. Goetz, C. W. Olanow, W. C. Koller et al., “Multicenter study of autologous adrenal medullary transplantation to the corpus striatum in patients with advanced Parkinson's disease,” New England Journal of Medicine, vol. 320, no. 6, pp. 337–341, 1989.
[24]
J. M. Schumacher, S. A. Ellias, E. P. Palmer et al., “Transplantation of embryonic porcine mesencephalic tissue in patients with PD,” Neurology, vol. 54, no. 5, pp. 1042–1050, 2000.
[25]
O. Lindvall, Z. Kokaia, and A. Martinez-Serrano, “Stem cell therapy for human neurodegenerative disorders - How to make it work,” Nature Medicine, vol. 10, supplement, pp. S42–S50, 2004.
[26]
J. H. Kim, J. M. Auerbach, J. A. Rodríguez-Gómez et al., “Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease,” Nature, vol. 418, no. 6893, pp. 50–56, 2002.
[27]
L. M. Bj?rklund, R. Sánchez-Pernaute, S. Chung et al., “Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 4, pp. 2344–2349, 2002.
[28]
F. E. O'Keeffe, S. A. Scott, P. Tyers et al., “Induction of A9 dopaminergic neurons from neural stem cells improves motor function in an animal model of Parkinson's disease,” Brain, vol. 131, no. 3, pp. 630–641, 2008.
[29]
M. L. Weiss, S. Medicetty, A. R. Bledsoe et al., “Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease,” Stem Cells, vol. 24, no. 3, pp. 781–792, 2006.
[30]
G. Bouchez, L. Sensebé, P. Vourc'h et al., “Partial recovery of dopaminergic pathway after graft of adult mesenchymal stem cells in a rat model of Parkinson's disease,” Neurochemistry International, vol. 52, no. 7, pp. 1332–1342, 2008.
[31]
M. Wernig, J. P. Zhao, J. Pruszak et al., “Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 15, pp. 5856–5861, 2008.
[32]
T. Vierbuchen, A. Ostermeier, Z. P. Pang, Y. Kokubu, T. C. Südhof, and M. Wernig, “Direct conversion of fibroblasts to functional neurons by defined factors,” Nature, vol. 463, no. 7284, pp. 1035–1041, 2010.
[33]
D. E. Redmond, K. B. Bjugstad, Y. D. Teng et al., “Behavioral improvement in a primate Parkinson's model is associated with multiple homeostatic effects of human neural stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 29, pp. 12175–12180, 2007.
[34]
A. L. Berry and T. Foltynie, “Gene therapy: a viable therapeutic strategy for Parkinson's disease?” Journal of Neurology, vol. 258, no. 2, pp. 179–188, 2011.
[35]
W. M. Caudle, R. E. Colebrooke, P. C. Emson, and G. W. Miller, “Altered vesicular dopamine storage in Parkinson's disease: a premature demise,” Trends in Neurosciences, vol. 31, no. 6, pp. 303–308, 2008.
[36]
L. Chen, Y. Ding, B. Cagniard et al., “Unregulated cytosolic dopamine causes neurodegeneration associated with oxidative stress in mice,” Journal of Neuroscience, vol. 28, no. 2, pp. 425–433, 2008.
[37]
A. Bj?rklund, T. Bj?rklund, and D. Kirik, “Gene therapy for dopamine replacement in Parkinson's disease,” Science translational medicine, vol. 1, no. 2, pp. 2–ps2, 2009.
[38]
M. Azzouz, E. Martin-Rendon, R. D. Barber et al., “Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson's disease,” Journal of Neuroscience, vol. 22, no. 23, pp. 10302–10312, 2002.
[39]
Y. Shen, S. I. Muramatsu, K. Ikeguchi et al., “Triple transduction with adeno-associated virus vectors expressing tyrosine hydroxylase, aromatic-L-amino-acid decarboxylase, and GTP cyclohydrolase I for gene therapy of Parkinson's disease,” Human Gene Therapy, vol. 11, no. 11, pp. 1509–1519, 2000.
[40]
D. Kirik, B. Georgievska, C. Burger et al., “Reversal of motor impairments in parkinsonian rats by continuous intrastriatal delivery of L-dopa using rAAV-mediated gene transfer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 7, pp. 4708–4713, 2002.
[41]
K. S. Bankiewicz, J. Forsayeth, J. L. Eberling et al., “Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC,” Molecular Therapy, vol. 14, no. 4, pp. 564–570, 2006.
[42]
B. Jarraya, S. Boulet, G. S. Ralph et al., “Dopamine gene therapy for Parkinson's disease in a nonhuman primate without associated dyskinesia,” Science Translational Medicine, vol. 1, no. 2, p. 2ra4, 2009.
[43]
J. L. Eberling, W. J. Jagust, C. W. Christine et al., “Results from a phase I safety trial of hAADC gene therapy for Parkinson disease,” Neurology, vol. 70, no. 21, pp. 1980–1983, 2008.
[44]
C. W. Christine, P. A. Starr, P. S. Larson et al., “Safety and tolerability of putaminal AADC gene therapy for Parkinson disease,” Neurology, vol. 73, no. 20, pp. 1662–1669, 2009.
[45]
M. E. Emborg, M. Carbon, J. E. Holden et al., “Subthalamic glutamic acid decarboxylase gene therapy: changes in motor function and cortical metabolism,” Journal of Cerebral Blood Flow and Metabolism, vol. 27, no. 3, pp. 501–509, 2007.
[46]
P. A. LeWitt, A. R. Rezai, M. A. Leehey et al., “AAV2-GAD gene therapy for advanced Parkinson's disease: a double-blind, sham-surgery controlled, randomised trial,” The Lancet Neurology, vol. 10, no. 4, pp. 309–319, 2011.
[47]
L. F. H. Lin, D. H. Doherty, J. D. Lile, S. Bektesh, and F. Collins, “GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons,” Science, vol. 260, no. 5111, pp. 1130–1132, 1993.
[48]
I. Stromberg, L. Bjorklund, M. Johansson et al., “Glial cell line-derived neurotrophic factor is expressed in the developing but not adult striatum and stimulates developing dopamine neurons in vivo,” Experimental Neurology, vol. 124, no. 2, pp. 401–412, 1993.
[49]
D. M. Gash, Z. Zhang, A. Ovadia et al., “Functional recovery in parkinsonian monkeys treated with GDNF,” Nature, vol. 380, no. 6571, pp. 252–255, 1996.
[50]
S. S. Gill, N. K. Patel, G. R. Hotton et al., “Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease,” Nature Medicine, vol. 9, no. 5, pp. 589–595, 2003.
[51]
A. E. Lang, S. Gill, N. K. Patel et al., “Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease,” Annals of Neurology, vol. 59, no. 3, pp. 459–466, 2006.
[52]
J. G. Nutt, K. J. Burchiel, C. L. Comella et al., “Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD,” Neurology, vol. 60, no. 1, pp. 69–73, 2003.
[53]
W. J. Marks, R. T. Bartus, J. Siffert et al., “Gene delivery of AAV2-neurturin for Parkinson's disease: a double-blind, randomised, controlled trial,” The Lancet Neurology, vol. 9, no. 12, pp. 1164–1172, 2010.
[54]
Ceregene, “Ceregene announces clinical data from phase 2 clinical trial of cere-120 for Parkinson’s disease—longer term follow-up indicates modest efficacy in primary and related endpoints,” 2009, http://www.ceregene.com/press_052709.asp.
[55]
D. Kirik, C. Winkler, and A. Bj?rklund, “Growth and functional efficacy of intrastriatal nigral transplants depend on the extent of nigrostriatal degeneration,” Journal of Neuroscience, vol. 21, no. 8, pp. 2889–2896, 2001.
[56]
P. Hagell and M. A. Cenci, “Dyskinesias and dopamine cell replacement in Parkinson's disease: a clinical perspective,” Brain Research Bulletin, vol. 68, no. 1-2, pp. 4–15, 2005.
[57]
K. Marek and J. Seibyl, “Beta-cit scans without evidemce of dopaminergic deficit (SWEDD) in the elldopa-cit and calm-cit study: long-term imaging assessment,” Neurology, vol. 60, p. A293, 2003.
[58]
C. Scherfler, J. Schwarz, A. Antonini et al., “Role of DAT-SPECT in the diagnostic work up of Parkinsonism,” Movement Disorders, vol. 22, no. 9, pp. 1229–1238, 2007.
[59]
G. L. Defer, H. Widner, R. M. Marié, P. Rémy, and M. Levivier, “Core assessment program for surgical interventional therapies in Parkinson's disease (CAPSIT-PD),” Movement Disorders, vol. 14, no. 4, pp. 572–584, 1999.
[60]
C. G. Goetz, S. Fahn, P. Martinez-Martin et al., “Movement disorder society-sponsored revision of the unified Parkinson's disease rating scale (MDS-UPDRS): process, format, and clinimetric testing plan,” Movement Disorders, vol. 22, no. 1, pp. 41–47, 2007.
[61]
J. G. Nutt, J. H. Carter, and W. R. Woodward, “Long-duration response to levodopa,” Neurology, vol. 45, no. 8, pp. 1613–1616, 1995.
[62]
S. I. Muramatsu, K. I. Fujimoto, S. Kato et al., “A phase i study of aromatic l-amino acid decarboxylase gene therapy for parkinson's disease,” Molecular Therapy, vol. 18, no. 9, pp. 1731–1735, 2010.
[63]
R. A. Hauser, F. Deckers, and P. Lehert, “Parkinson's disease home diary: further validation amd implications for clinical trials,” Movement Disorders, vol. 19, no. 12, pp. 1409–1413, 2004.
[64]
K. E. Lyons and R. Pahwa, “Electronic motor function diary for patients with Parkinson's disease: a feasibility study,” Parkinsonism and Related Disorders, vol. 13, no. 5, pp. 304–307, 2007.
[65]
C. Colosimo, P. Martínez-Martín, G. Fabbrini et al., “Task force report on scales to assess dyskinesia in Parkinson's disease: critique and recommendations,” Movement Disorders, vol. 25, no. 9, pp. 1131–1142, 2010.
[66]
J. R. Evans, S. L. Mason, C. H. Williams-Gray et al., “The natural history of treated Parkinson's disease in an incident, community based cohort,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 82, no. 10, pp. 1112–1118, 2011.
[67]
B. L. Den Oudsten, G. L. Van Heck, and J. De Vries, “The suitability of patient-based measures in the field of Parkinson's disease: a systematic review,” Movement Disorders, vol. 22, no. 10, pp. 1390–1401, 2007.
[68]
A. Williams, S. Gill, T. Varma et al., “Deep brain stimulation plus best medical therapy versus best medical therapy alone for advanced Parkinson's disease (PD SURG trial): a randomised, open-label trial,” The Lancet Neurology, vol. 9, no. 6, pp. 581–591, 2010.
[69]
D. J. Brooks, “Neuroimaging in Parkinson's disease,” NeuroRx, vol. 1, no. 2, pp. 243–254, 2004.
[70]
P. K. Morrish, G. V. Sawle, and D. J. Brooks, “An [18F]dopa-PET and clinical study of the rate of progression in Parkinson's disease,” Brain, vol. 119, no. 2, pp. 585–591, 1996.
[71]
P. Remy, Y. Samson, P. Hantraye et al., “Clinical correlates of [18F]fluorodopa uptake in five grafted Parkinsonian patients,” Annals of Neurology, vol. 38, no. 4, pp. 580–588, 1995.
[72]
J. H. Kordower, T. B. Freeman, E. Y. Chen et al., “Fetal nigral grafts survive and mediate clinical benefit in a patient with Parkinson's disease,” Movement Disorders, vol. 13, no. 3, pp. 383–393, 1998.
[73]
J. H. Kordower, T. B. Freeman, B. J. Snow et al., “Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson's disease,” New England Journal of Medicine, vol. 332, no. 17, pp. 1118–1124, 1995.
[74]
V. Cochen, M. J. Ribeiro, J. P. Nguyen et al., “Transplantation in Parkinson's disease: PET changes correlate with the amount of grafted tissue,” Movement Disorders, vol. 18, no. 8, pp. 928–932, 2003.
[75]
P. Hagell and M. A. Cenci, “Dyskinesias and dopamine cell replacement in Parkinson's disease: a clinical perspective,” Brain Research Bulletin, vol. 68, no. 1-2, pp. 4–15, 2005.
[76]
P. Hagell, P. Piccini, A. Bj?rklund et al., “Dyskinesias following neural transplantation in Parkinson's disease,” Nature Neuroscience, vol. 5, no. 7, pp. 627–628, 2002.
[77]
M. Politis, W. H. Oertel, K. Wu et al., “Graft-induced dyskinesias in Parkinson's disease: high striatal serotonin/dopamine transporter ratio,” Movement Disorders, vol. 26, no. 11, pp. 1997–2003, 2011.
[78]
M. Politis, K. Wu, C. Loane et al., “Staging of serotonergic dysfunction in Parkinson's Disease: an in vivo 11C-DASB PET study,” Neurobiology of Disease, vol. 40, no. 1, pp. 216–221, 2010.
[79]
S. C. Chow, J. Shao, and H. Wang, Sample Size Calculation in Clinical Research, Chapman & Hall/CRC, New York, NY, USA, 2nd edition, 2008.
[80]
R. L. Albin, “Sham surgery controls: intracerebral grafting of fetal tissue for Parkinson's disease and proposed criteria for use of sham surgery controls,” Journal of Medical Ethics, vol. 28, no. 5, pp. 322–325, 2002.
[81]
N. Shetty, J. H. Friedman, K. Kieburtz, F. J. Marshall, and D. Oakes, “The placebo response in Parkinson's disease,” Clinical Neuropharmacology, vol. 22, no. 4, pp. 207–212, 1999.
[82]
C. G. Goetz, J. Wuu, M. P. McDermott et al., “Placebo response in Parkinson's disease: comparisons among 11 trials covering medical and surgical interventions,” Movement Disorders, vol. 23, no. 5, pp. 690–699, 2008.
[83]
D. W. Dickson, H. Fujishiro, C. Orr et al., “Neuropathology of non-motor features of Parkinson disease,” Parkinsonism and Related Disorders, vol. 15, no. 3, supplement 3, pp. S1–S5, 2009.
[84]
S. G?gel, M. Gubernator, and S. L. Minger, “Progress and prospects: stem cells and neurological diseases,” Gene Therapy, vol. 18, no. 1, pp. 1–6, 2011.