全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高温熔融盐斜温层单罐蓄热的热过程特性

, PP. 68-74

Keywords: 太阳能,高温蓄热,熔融盐,多孔介质,斜温层

Full-Text   Cite this paper   Add to My Lib

Abstract:

以斜温层蓄热单罐设计理念为基础,采用硝酸熔融盐作为传热蓄热介质,锆质蓄热球与泡沫碳化硅陶瓷2种代表性的多孔介质填料作为固体蓄热体,构建了多尺度结构斜温层混合蓄热方法及系统,实验研究了多尺度结构中熔融盐的流动与蓄热特性。研究结果表明,由于斜温层的存在,系统理论蓄热效率小于80%;相对于熔融盐单相流体蓄热,采用锆质蓄热球与泡沫碳化硅的斜温层混合蓄热方式会导致系统的有效蓄热容量有所降低,但多孔介质填料的加入有利于保持熔融盐流体为理想的重力流或活塞流,并部分替代价格较高的熔融盐,需要结合蓄热容量以及经济性进行最优化设计。

References

[1]  Herrmann U,Kearney D W.Survey of thermal energy storage for parabolic trough power plants[J].Journal of Solar Energy Engineering,2002,124(2):145-152.
[2]  袁建丽,韩巍,金红光,等.新型塔式太阳能热发电系统集成研究[J].中国电机工程学报,2010,30(29):115-121.Yuan Jianli,Han Wei,Jin Hongguang,et al.Research on system integration of a novel solar tower thermal power plant[J].Proceedings of the CSEE,2010,30(29):115-121(in Chinese).
[3]  Piemonte V,De Falco M,Tarquini P,et al.Life cycle assessment of a high temperature molten salt concentrated solar power plant[J].Solar Energy,2011,85(5):1101-1108.
[4]  Sandia National Laboratories.Solar power tower design basis document[R].California:Sandia National Laboratories,2001.
[5]  Herrmann U,Kelly B,Price H.Two-tank molten salt storage for parabolic trough solar power plants [J].Energy,2004,29(5-6):883-893.
[6]  Pacheco J E,Showalter S K,Kolb W J.Development of a molten-salt thermocline thermal storage system for parabolic trough plants[J].Journal of Solar Energy Engineering,2002,124(2):153-159.
[7]  Brosseau D,Kelton J W,Ray D,et al.Testing of thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems in parabolic trough plants[J].Journal of Solar Energy Engineering,2005,127(1):109-116.
[8]  Yang Z,Garimella S V.Thermal analysis of solar thermal energy storage in a molten-salt thermocline[J].Solar Energy,2010,84(6):974-985.
[9]  Bayón R,Rojas E.Simulation of thermocline storage for solar thermal power plants: from dimensionless results to prototypes and real-size tanks[J].International Journal of Heat and Mass Transfer,2013,60(1):713-721.
[10]  Qin F,Yang X,Ding Z,et al.Thermocline stability criterions in single-tanks of molten salt thermal energy storage[J].Applied Energy,2012,97(1):816-821.
[11]  Flueckiger S M,Garimella S V.Second-law analysis of molten-salt thermal energy storage in thermoclines [J].Solar Energy,2012,86(5):1621-1631.
[12]  Xu C,Wang Z,He Y,et al.Sensitivity analysis of the numerical study on the thermal performance of a packed-bed molten salt thermocline thermal storage system[J].Applied Energy,2012,92(1):65-75.
[13]  Li P,Lew J V,Karaki W,et al.Generalized charts of energy storage effectiveness for thermocline heat storage tank design and calibration[J].Solar Energy,2011,85(9):2130-2143.
[14]  左远志,李熙亚.熔融盐斜温层混合蓄热单罐系统及其实验研究[J].化工进展,2007,26(7):1018-1022.Zuo Yuanzhi,Li Xiya.Scheme and experiments of a molten-salt hybrid thermocline thermal storage system [J].Chemical Industry and Engineering Progress,2007,26(7):1018-1022 (in Chinese).
[15]  Brosseau D.Inorganic molten salt thermal storage R&D[EB/OL].Washington,US:National Renewable Energy Laboratory,2006[2006-02-.http://www.nrel. gov/csp/troughnet/pdfs/brosseau_tes_rd_approach.pdf.
[16]  Peng Q,Ding J,Wei X,et al.The preparation and properties of multi-component molten salts[J].Applied Energy,2010,87(9):2812-2817.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133