全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

纳米颗粒填充对LDPE/silica纳米复合介质阈值电场的影响

, PP. 201-206

Keywords: 纳米复合介质,低密度聚乙烯,纳米二氧化硅,高场电导,空间电荷限制电流

Full-Text   Cite this paper   Add to My Lib

Abstract:

为研究纳米颗粒填充对复合介质阈值电场特性的影响,以低密度聚乙烯(low-densitypolyethylene,LDPE)为基料、纳米二氧化硅(silica)为填充颗粒,制备了填充粒径分别为7和16nm、填充浓度在0~5.0%范围的LDPE/silica纳米复合介质,并测试了复合介质的准稳态直流电导。研究表明:低电场下纳米颗粒对复合介质直流电导的影响不大;在高电场下,低填充密度(1.0%附近)时复合介质的电导比纯LDPE的值大,阈值电场均低于纯LDPE的值;仅当填充浓度较高时,复合介质的电导才下降,并且阈值电场高于纯LDPE的值。纳米颗粒填充粒径7和16nm时,纳米复合介质的阈值电场特性基本一致,但在高电场下,填充粒径7nm时的复合介质电导小于填充粒径为16nm的值,且填充粒径7nm时复合介质的阈值电场都高于填充粒径为16nm时的值,表明填充粒径越小的纳米颗粒越能提升复合介质的阈值电场。另外,基于空间电荷限制电流理论(spacechargelimitedcurrent,SCLC)分析可知:纳米颗粒填充浓度较低时,纳米复合介质中总陷阱浓度H相对于纯LDPE都明显下降,仅当填充浓度进一步升高时,总陷阱浓度H才高于纯LDPE中的值。填充浓度在0.1%~5.0%时,纳米复合介质内部总陷阱浓度H随填充浓度的升高而升高,这主要与纳米颗粒引入颗粒/基料界面结构的增多有关。

References

[1]  Kim H J,Kwag D S,Kim S H,et al.Electrical insulation design and experimental results of a high-temperature superconducting cable[J].IEEE Transactions on Applied Superconductivity,2007,17(2):1743-1747.
[2]  Fabiani D,Montanari G C,Laurent C,et al.Polymeric HVDC cable design and space charge accumulation-part 1:insulation/semicon interface[J].IEEE Transactions on Electrical Insulation Magazine,2007,23(6):11-19.
[3]  Ieda M,Nawata M,Nawata M.DC treeing breakdown associated with space charge formation in polyethylene [J].IEEE Transactions on Electrical Insulation,1977(33):19-25.
[4]  Tanaka T.Dielectric nanocomposites with insulating properties[J].IEEE Transactions on Dielectrics and Electrical Insulation,2005,12(5):914-928.
[5]  Nelson J K.Overview of nanodielectrics:Insulating materials of the future[C]//Electrical Insulation Conference and Electrical Manufacturing Expo.USA:IEEE,2007:229-235.
[6]  Danikas M,Tanaka T.Nanocomposites-a review of electrical treeing and breakdown[J].IEEE Transactions on Electrical Insulation Magazine,2009,25(4):19-25.
[7]  Calebrese C,Hui L,Schadler L S,et al.A review on the importance of nanocomposite processing to enhance electrical insulation[J].IEEE Transactions on Dielectrics and Electrical Insulation,2011,18(4):938-945.
[8]  Zhang Yewen,Lewiner J,Alquie C,et al.Evidence of strong correlation between space-charge buildup and breakdown in cable insulation[J].IEEE Transactions on Dielectrics and Electrical Insulation,1996,3(6):778-783.
[9]  Li Ying,Takada T.Experimental observation of charge transport and injection in XLPE at polarity reversal[J].Journal of Physics D:Applied Physics,1992,25(4):704.
[10]  Wu Jiandong,Yin Yi,Lan Li,et al.Space Charge Trapping and Conduction in Low-Density Polyethylene/ Silica Nanocomposite[J].Japanese Journal of Applied Physics,2012,51(4):041602.
[11]  Chen G,Tay T Y G,Davies A E,et al.Electrodes and charge injection in low-density polyethylene using the pulsed electroacoustic technique[J].IEEE Transactions on Dielectrics and Electrical Insulation,2001,8(6):867-873.
[12]  Cao Y,Irwin P C,Younsi K.The future of nanodielectrics in the electrical power industry[J].IEEE Transactions on Dielectrics and Electrical Insulation,2004,11(5):797-807.
[13]  兰莉,吴建东,纪哲强,等.纳米SiO2/低密度聚乙烯复合介质的击穿特性[J].中国电机工程学报,2012,32(13):138-143.Lan Li,Wu Jiandong,Ji Zheqiang,et al.Breakdown Properties of Nano-SiO2/LDPE Composite[J].Proceedings of the CSEE,2012,32(13):138-143(in Chinese).
[14]  Tanaka T.Dielectric nanocomposites with insulating properties[J].IEEE Transactions on Dielectrics and Electrical Insulation,2005,12(5):914-928.
[15]  Montanari G C,Fabiani D,Dissado L A.A new conduction phenomenon observed in polyethylene and epoxy resin:Ultra-fast soliton conduction[J].Journal of Polymer Science Part B:Polymer Physics,2011,49(16):1173-1182.
[16]  Montanari G C,Montanari G,Palmieri F,et al.Space-charge trapping and conduction in LDPE,HDPE and XLPE[J].Journal of Physics D:Applied Physics,2001 34(18):2902-2911.
[17]  Rose A.Space-charge-limited currents in solids[J].Physical Review,1955,97(6):1538-1544.
[18]  Lampert M A.Simplified theory of space-charge-limited currents in an insulator with traps[J].Physical Review,1956,103(6):1648-1656.
[19]  Mark P,Helfrich W.Space-charge-limited currents in organic crystals[J].Journal of Applied Physics,1962,33(1):205-215.
[20]  Beyer J,Morshuis P H F,Smit J J.Conduction current measurements on polycarbonates subjected to electrical and thermal stress[C]//2000 Annual Report Conference on Electrical Insulation and Dielectric Phenomena.Victoria,BC:IEEE,2000:617-621.
[21]  Anta J A,Marcelli G,Meunie M,et al.Models of electron trapping and transport in polyethylene:Current-voltage characteristics[J].Journal of Applied Physics,2002,92(2):1002-1008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133