全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于平衡降阶模型的多机系统非线性励磁预测控制

, PP. 61-67

Keywords: 电力系统,非线性预测控制,励磁控制,平衡降阶,经验Gramians

Full-Text   Cite this paper   Add to My Lib

Abstract:

将预测控制与模型降阶技术相结合提出一种基于平衡降阶模型的多机电力系统非线性励磁预测控制方法,以解决最优励磁控制和传统比例积分微分励磁控制无法考虑系统复杂状态和控制输入约束的问题,并且降低非线性励磁预测控制高阶动态模型数值计算的复杂性。首先,利用经验Gramians平衡降阶原理,对电力系统非线性动态模型进行降阶,以降低动态模型的维数。然后,建立基于降阶模型的励磁预测控制模型。以系统输入输出最小二乘残差向量为优化目标,以降阶动态模型作为等约束条件,以输出量、控制量的变化范围作为不等约束条件。利用内点法求解优化问题。最后,利用一个四机电力系统验证该预测控制方法的有效性,仿真结果表明:基于平衡降阶模型的多机电力系统非线性励磁预测控制器能够大大缩短优化计算时间,维持机端电压在定值附近,提高系统的稳定性。

References

[1]  王杰,陈陈.多机电力系统参数自适应控制设计的模型与应用[J].中国电机工程学报,2002,22(7):49-53.Wang Jie,Chen Chen.Model and application for parametric adaptive control design of multi-machines power systems[J].Proceedings of the CSEE,2002,22(7):49-53(in Chinese).
[2]  范澎,毛承雄,陆继明,等.多机电力系统神经网络最优励磁控制器[J].中国电机工程学报,2004,24(7):80-84.Fan Peng,Mao Chengxong,Lu Jiming,et al.Neural network based optimal excitation controller for muti-machine power system[J].Proceedings of the CSEE,2004,24(7):80-84(in Chinese).
[3]  刘辉,李啸骢,韦化,等.基于目标状态方程的非线性预测励磁控制器的设计[J].中国电机工程学报,2005,25(17):27-31.Liu Hui,Li Xiaocong,Wei Hua,et al.The design of nonlinear predictive excitation controller based on TSE[J].Proceedings of the CSEE,2005,25(17):27-31(in Chinese).
[4]  Allgower F,Findeise R,Nagy Z K.Nonliear model predictive control:from theory to application[J].Journal of the Chinese Institute of Chemical Engineers,2004,35(3):299-315.
[5]  Diehl M,Findeisen R,Allgower F,et al.Nominal stability of real-time iteration scheme for nonlinear model predictive control[J].IEE Proceedings-Control Theory and Applications,2005,152(3):296-308.
[6]  赵洪山,宋国维,江全元.利用平衡理论进行电力系统模型降阶研究[J].电工技术学报,2010,25(2):127-133.Zhao Hongshan,Song Guowei,Jiang Quanyuan.Reduction of power system model using balanced realization method[J].Transactions of China Electrotechnical Society,2010,25(2):127-133(in Chinese).
[7]  Li Zhiwei,Lan Xiaoming,Zhao Hongshan.Empirical gramians model reduction of controlled nonlinear power systems[J].Information Engineering Letters.2011,1(1):38-44.
[8]  Lall S,Marsden J E,Glavaski S.A subspace approach to balanced truncation for model reduction of nonlinear control system,International Journal of Robust and Nonlinear Control[J].2002,12(6):519-535.
[9]  Hahn J,Edgar F T.Balancing approach to minimal realization and model reduction of stable nonlinear systems[J].Industrial and Engineering Chemistry Research,2002,41(9):2204-2212.
[10]  Hahn J,Edgar F T,Marquardt W.Controllability and observability covariance matrices for the analysis and order reduction of nonlinear systems[J].Journal of Process Control,2003,13(2):115-127.
[11]  Machowski J,Bialek J W,Bumby J R.Power system Dynamics and Stability[M].Wiley,1993,347-350.
[12]  Moore J B.Principal Component analysis in linear systems:controllability observability and model reduction[J].IEEE Trans. on Automatic Control,1981,26(1):17-32.
[13]  王锡凡,方万良,杜正春.现代电力系统分析[M].北京:科学出版社,2003,120-123.Wang Xi-fan,Fang Wanliang,Du Zhengchun.Advanced analysis of power system[M].Beijing:Science Press,2003,120-123(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133