全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于多项式混沌和进化算法的快速鲁棒优化算法及其在电磁场逆问题中的应用

, PP. 171-175

Keywords: 电磁场,逆问题,进化算法,多项式混沌,鲁棒优化

Full-Text   Cite this paper   Add to My Lib

Abstract:

为提高电磁场逆问题鲁棒优化设计的计算效率,提出一种基于多项式混沌和进化算法相结合的快速鲁棒优化方法。在该方法中,通过将多项式混沌展开作为鲁棒性能参数的随机响应面模型,提高了期望函数的计算效率和计算精度。此外,为进一步提高算法的计算效率,文章又提出了期望适值赋值的新机制,以及概率可行性模型处理约束函数鲁棒性的方法;引入同时搜索全局最优解和鲁棒最优解的迭代循环机制。通过典型电磁场逆问题的鲁棒优化设计对本文算法进行了数值验证。数值分析结果证明了该文方法的可行性和先进性。

References

[1]  Kennedy J,Eberhart R. Particle swarm optimization[C]// Proceedings of IEEE International Conference on Neural Networks. Perth, Australia,IV,1995:1941-1948.
[2]  Akdagli A,Guney K. Shaped-beam pattern synthesis of equally and unequally spaced linear antenna arrays using a modified tabu search algorithm[J]. Microwave and Optical Technology Letters, 2003,36(1):16-20.
[3]  Beyer H G,Sendhoff B. Robust optimization-a comprehensive survey[J]. Computer Methods in Applied Mechanics and Engineering, 2007,196(33-34):3190-3218.
[4]  Maruyama T,Igarashi H. An effective robust optimization based on genetic algorithm[J]. IEEE Transactions on Magnetics, 2008,44(6):990-993.
[5]  Soares G L,Adriano R L S,Maia C A,et al. Robust multi-objective TEAM 22 problem:a case study for uncertainties in design optimization[J]. IEEE Transactions on Magnetics, 2009,45(3):1028-1031.
[6]  Sahinidis N V. Optimization under uncertainty:state-of-the-art and opportunities[J]. Computers & Chemical Engineering, 2004,28(6-7):971-983.
[7]  Xu Y,Huang G H,Qin X S,et al. SRCCP:a stochastic robust chance-constrained programming model for municipal solid waste management under uncertainty [J]. Resources Conservation and Recycling, 2009,53(6):352-363.
[8]  Du X,Chen W. Towards a better understanding of modeling feasibility robustness in engineering design [J]. ASME Journal of Mechanical Design, 2000,122(4):385-394.
[9]  Alonso J J,LeGresley P,Pereyra V. Aircraft design optimization[J]. Mathematics and Computers in Simulation, 2009,79(6):1948-1958.
[10]  Branke J. Evolutionary Optimization in Dynamic Environments[M]. Norwell:MA, Kluwer,2002:125-169.
[11]  Goh C K,Tan K C,Cheong C Y,et al. An investigation on noise-induced features in robust evolutionary multi- objective optimization[J]. Expert System with Applications, 2010,37(8):5960-5980.
[12]  Wiener N. The homogeneous chaos[J]. American Journal of Mathematics, 1938,60(4):897-936.
[13]  Xiu D,Karniadakis G. The Winener-Askey polynomial chaos for stochastic differential equations[J]. SIAM Journal on Scientific Computing, 2002,24(2):619-644.
[14]  Nechak L,Berger S,Aubry E. A polynomial chaos approach to the robust analysis of the dynamic behaviour of friction systems[J]. European Journal of Mechanics A/Solids, 2011,30(4):594-607.
[15]  Witteveen J A S,Sarkar S. Modeling physical uncertainties in dynamic stall induced fluid- structure interaction of turbine blades using arbitrary polynomial chaos[J]. Computers and Structures, 2007,85(11-14):866-878.
[16]  Manan A,Cooper J E. Prediction of uncertain frequency response function bounds using polynomial chaos expansion[J]. Journal of Sound and Vibration, 2010,329(16):3348-3358.
[17]  Xiu D B. Fast numerical methods for robust optimal design[J]. Engineering Optimization, 2008,40(6):489-504.
[18]  Ho S L,Yang S Y,Ni G Z,et al. An improved PSO method with application to multimodal functions of inverse problems[J]. IEEE Transactions on Magnetics, 2007,43(4):1597-1600.
[19]  Eberhart R C,Kennedy J. A new optimizer using particle swarm theory[C]//Proceedings of 6th International Symposium on Micro Machine and Human Science. Nagoya, 1995:39-43.
[20]  Shi Y. Eberhart R. A modified particle swarm optimizer [C]//IEEE International Conference on Evolutionary Computation.Anchorage, Alaska,1998:69-73.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133