全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

风电机组叶片裂纹故障特征提取方法

, PP. 112-117

Keywords: 风电机组叶片,裂纹故障,声发射,小波尺度谱,重分配尺度谱,Shannon熵,特征提取

Full-Text   Cite this paper   Add to My Lib

Abstract:

为实现风电机组叶片及时有效地监测和维护,使用声发射技术采集疲劳裂纹信号,从而提取不同裂纹特征。鉴于尺度谱受到Heisenberg测不准原理的极限制约,时频聚集性不佳、干扰强的现象,提出风电机组叶片裂纹声发射信号的优化小波重分配尺度谱分析。基于Shannon熵理论计算裂纹萌生和预制裂纹再扩展的声发射信号的重分配尺度谱小波基函数带宽参数,得到最适合此两阶段裂纹声发射信号的Morlet小波基函数,计算优化基函数的小波重分配尺度谱,获得不同类型裂纹特征成分在时间尺度平面的高幅值能量分布。实验研究表明,优化小波重分配尺度谱的方法具有很好的时频聚集性和抗噪能力,实现了风电机组叶片裂纹声发射信号的时频特征清晰准确的提取,识别风电机组叶片不同阶段裂纹故障。进而可以采用该方法监测风电机组叶片在复杂环境中的退化状态。

References

[1]  Kirikera G R,Shinde V,Schulz M J,et al. Monitoring multi-site damage growth during quasi-static testing of a wind turbine blade using a structural neural system [J]. Structural Health Monitoring, 2008,7(2):157-173.
[2]  朱忠奎,陈再良,王传洋. 基于小波尺度图重分配的轴承瞬态特征检测与提取[J]. 数据采集与处理, 2005,20(3):356-360. Zhu Zhongliang,Chen Zailiang,Wang Chuanyang.Bearing transient feature detection and extraction based on reassigned scalogram[J].Journal of Data Acquisition &Processing,2005,20(3)
[3]  彭志科,何永勇,卢青,等. 用小波时频分析方法研究发电机碰摩故障特征[J]. 中国电机工程学报, 2003,23(5):75-79. Peng Zhike,He Yongyong,Lu Qing,et al.Using wavelet method to analyze fault features of rub rotor in generator [J].Proceedings of the CSEE,2003,23(5)
[4]  Joosse P A,Blanch M J,Dutton A G,et al. Acoustic emission monitoring of small wind turbine blades [J]. Journal of Solar Energy Engineering, 2002,124(4):446-454.
[5]  廖传军,李学军,刘德顺. 小波再分配尺度谱在声发射信号特征提取中的应用[J]. 机械工程学报, 2009,45(2):273-279. Liao Chuanjun,Li Xuejun,Liu Deshun.Application of reassigned wavelet scalogram in feature extraction based on acoustic emission signal[J].Chinese Journal of Mechanical Engineering,2009,45(2)
[6]  汤宝平,蒋永华,董绍江. 重分配小波尺度谱的时频分布优化方法研究[J]. 仪器仪表学报, 2010,31(6):1330-1334. Tang Baoping,Jiang Yonghua,Dong Shaojiang.Time- frequency representation optimization of reassigned wavelet scalogram[J].Chinese Journal of Scientific Instrument,2010,31(6)
[7]  Mallat S. A wavelet tour of signal processing:the sparseway[M]. Third Edition.Burington:Elsevier Inc, 2010:284-292.
[8]  何正嘉,訾艳阳,孟庆风,等. 机械设备非平稳信号的故障诊断原理及应用[M]. 北京:高等教育出版社, 2001:7-13(四). He Zhengjia,Zi Yanyang,Meng Qingfeng,et al.Fault diagnosis principle and application of non-stationary signal of mechanical equipment[M].Beijing:HigherEducation Press,2001
[9]  He Ping,Li Pan,Sun Huiqi. Feature extraction of acoustic signals based on complex Morlet wavelet[J]. Procedia Engineering, 2011(15):464-468.
[10]  蒋永华,汤宝平,刘文艺,等. 基于参数优化Morlet小波变换的故障特征提取方法[J]. 仪器仪表学报, 2010,31(1):56-60. Jiang Yonghua,Tang Baoping,Liu Wenyi,et al.Feature extraction method based on parameter optimized Morlet wavelet transform[J].Chinese Journal of Scientific Instrument,2010,31(1)
[11]  张广平. 循环加载下金属薄膜的裂纹萌生行为及其微观机制的研究[J]. 机械强度, 2010,31(S1):5-7. Zhang Guangping.Study of the crack initiation behavior and its mechanism of thin metal films under cyclic loading[J].Journal of Mechanical strength,2010,31(S1)
[12]  Kirikera G R,Schulz M J,Sundaresan M J. Multiple damage identification on a wind turbine blade using a structural neural system[J]. Proceedings of the SPIE-The International Society for Optical Engineering, 2007(6530):65300T-1-12.
[13]  Marín J C,Barroso A,París F,et al. Study of fatigue damage in wind turbine blades[J]. Engineering Failure Analysis, 2009,16(2):656-668.
[14]  Anastassopoulos A A,Kouroussis D A,Nikolaidis V N. Structural integrity evaluation of wind turbine blades using pattern recognition analysis on acoustic emission data[C]//The 25th European Conference on Acoustic Emission Testing(EWGAE),Prague,Czech Reptember,2002.
[15]  Dunegan H L. Detection of fatigue crack growth by acoustic emission techniques[J]. Materials Evaluation, 1970,28(10):221-223.
[16]  Ziola S. Digital signal processing of modal emission signals[J]. Journal of Acoustic Emission, 1996,14(3/4):12-18.
[17]  Lekou D,Vionis P,Joosse P A,et al. Full-scale blade testing enhanced by acoustic emission monitoring[C]// Proceeding of European Wind Energy Conference,Madrid,Spain,2003.
[18]  Paquette J,Van Dam J,Hughes S. Structural testing of 9m carbon fiber wind turbine research blades[C]//AIAA 2007 Wind Energy Symposium,Reno,USA,2007.
[19]  Tavner P J. Review of condition monitoring of rotating electrical machines[J]. IET Electric Power Applica-tions, 2008,2(4):215-247.
[20]  Kirikera G R,Shinde V,Schulz M J,et al. A structural neural system for real-time health monitoring of composite materials[J]. Structural Health Monitoring, 2008,7(1):65-83.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133