[1] | Kirikera G R,Shinde V,Schulz M J,et al. Monitoring multi-site damage growth during quasi-static testing of a wind turbine blade using a structural neural system [J]. Structural Health Monitoring, 2008,7(2):157-173.
|
[2] | 朱忠奎,陈再良,王传洋. 基于小波尺度图重分配的轴承瞬态特征检测与提取[J]. 数据采集与处理, 2005,20(3):356-360. Zhu Zhongliang,Chen Zailiang,Wang Chuanyang.Bearing transient feature detection and extraction based on reassigned scalogram[J].Journal of Data Acquisition &Processing,2005,20(3)
|
[3] | 彭志科,何永勇,卢青,等. 用小波时频分析方法研究发电机碰摩故障特征[J]. 中国电机工程学报, 2003,23(5):75-79. Peng Zhike,He Yongyong,Lu Qing,et al.Using wavelet method to analyze fault features of rub rotor in generator [J].Proceedings of the CSEE,2003,23(5)
|
[4] | Joosse P A,Blanch M J,Dutton A G,et al. Acoustic emission monitoring of small wind turbine blades [J]. Journal of Solar Energy Engineering, 2002,124(4):446-454.
|
[5] | 廖传军,李学军,刘德顺. 小波再分配尺度谱在声发射信号特征提取中的应用[J]. 机械工程学报, 2009,45(2):273-279. Liao Chuanjun,Li Xuejun,Liu Deshun.Application of reassigned wavelet scalogram in feature extraction based on acoustic emission signal[J].Chinese Journal of Mechanical Engineering,2009,45(2)
|
[6] | 汤宝平,蒋永华,董绍江. 重分配小波尺度谱的时频分布优化方法研究[J]. 仪器仪表学报, 2010,31(6):1330-1334. Tang Baoping,Jiang Yonghua,Dong Shaojiang.Time- frequency representation optimization of reassigned wavelet scalogram[J].Chinese Journal of Scientific Instrument,2010,31(6)
|
[7] | Mallat S. A wavelet tour of signal processing:the sparseway[M]. Third Edition.Burington:Elsevier Inc, 2010:284-292.
|
[8] | 何正嘉,訾艳阳,孟庆风,等. 机械设备非平稳信号的故障诊断原理及应用[M]. 北京:高等教育出版社, 2001:7-13(四). He Zhengjia,Zi Yanyang,Meng Qingfeng,et al.Fault diagnosis principle and application of non-stationary signal of mechanical equipment[M].Beijing:HigherEducation Press,2001
|
[9] | He Ping,Li Pan,Sun Huiqi. Feature extraction of acoustic signals based on complex Morlet wavelet[J]. Procedia Engineering, 2011(15):464-468.
|
[10] | 蒋永华,汤宝平,刘文艺,等. 基于参数优化Morlet小波变换的故障特征提取方法[J]. 仪器仪表学报, 2010,31(1):56-60. Jiang Yonghua,Tang Baoping,Liu Wenyi,et al.Feature extraction method based on parameter optimized Morlet wavelet transform[J].Chinese Journal of Scientific Instrument,2010,31(1)
|
[11] | 张广平. 循环加载下金属薄膜的裂纹萌生行为及其微观机制的研究[J]. 机械强度, 2010,31(S1):5-7. Zhang Guangping.Study of the crack initiation behavior and its mechanism of thin metal films under cyclic loading[J].Journal of Mechanical strength,2010,31(S1)
|
[12] | Kirikera G R,Schulz M J,Sundaresan M J. Multiple damage identification on a wind turbine blade using a structural neural system[J]. Proceedings of the SPIE-The International Society for Optical Engineering, 2007(6530):65300T-1-12.
|
[13] | Marín J C,Barroso A,París F,et al. Study of fatigue damage in wind turbine blades[J]. Engineering Failure Analysis, 2009,16(2):656-668.
|
[14] | Anastassopoulos A A,Kouroussis D A,Nikolaidis V N. Structural integrity evaluation of wind turbine blades using pattern recognition analysis on acoustic emission data[C]//The 25th European Conference on Acoustic Emission Testing(EWGAE),Prague,Czech Reptember,2002.
|
[15] | Dunegan H L. Detection of fatigue crack growth by acoustic emission techniques[J]. Materials Evaluation, 1970,28(10):221-223.
|
[16] | Ziola S. Digital signal processing of modal emission signals[J]. Journal of Acoustic Emission, 1996,14(3/4):12-18.
|
[17] | Lekou D,Vionis P,Joosse P A,et al. Full-scale blade testing enhanced by acoustic emission monitoring[C]// Proceeding of European Wind Energy Conference,Madrid,Spain,2003.
|
[18] | Paquette J,Van Dam J,Hughes S. Structural testing of 9m carbon fiber wind turbine research blades[C]//AIAA 2007 Wind Energy Symposium,Reno,USA,2007.
|
[19] | Tavner P J. Review of condition monitoring of rotating electrical machines[J]. IET Electric Power Applica-tions, 2008,2(4):215-247.
|
[20] | Kirikera G R,Shinde V,Schulz M J,et al. A structural neural system for real-time health monitoring of composite materials[J]. Structural Health Monitoring, 2008,7(1):65-83.
|