全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种用于分解协调无功优化的全分邻近中心算法

, PP. 77-83

Keywords: 无功优化,分解协调,拉格朗日,平滑,最优梯度,邻近中心算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对无功优化分解协调模型求解中增广拉格朗日函数不可分的问题,在邻近中心算法基础上提出一种适用于特殊等式约束优化问题、可实现所有步骤分解计算的全分邻近中心算法。该算法通过邻近函数构造平滑同时可分的拉格朗日函数,并通过最优梯度更新拉格朗日乘子,只需要在相邻分区之间交换边界节点信息即可实现全网无功优化的分解协调计算。与通过对偶梯度更新拉格朗日乘子的分解算法相比,它不但可以直接确定计算所用参数,而且可以大大提高收敛速度。算例结果表明,所提算法可以实现全网无功优化的分解协调计算,并且其计算效率远高于基于辅助问题原理的分解协调算法。

References

[1]  Mansour M O,Abdel-Rahman T M. Non-linear var power optimization using decomposition and coordination[J]. IEEE Trans. on Power Apparatus and Systems, 1984,103(2):246-255.
[2]  Deeb N,Shahidehpour S M. Linear reactive power optimization in a large power network using the decomposition approach[J]. IEEE Trans. on Power Systems, 1990,5(2):428-438.
[3]  王建学,王锡凡,陈皓勇,等. 基于协同进化法的电力系统无功优化[J]. 中国电机工程学报, 2004,24(9):124-129. Wang Jianxue,Wang Xifan,Cheng Haoyong,et al.Reactive power optimization based on cooperative co-evolutionary approach[J].Proceedings of the CSEE,2004,24(9)
[4]  赵波,郭创新,张鹏翔,等. 基于分布式协同粒子群优化算法的电力系统无功优化[J]. 中国电机工程学报, 2005,25(21):1-7. Zhao Bo,Guo Chuangxin,Zhang Pengxiang,et al.Distributed cooperative particle swarm optimization algorithm for reactive power optimization[J].Proceedings of the CSEE,2005,25(21)
[5]  Liang CH,Chung CY,Wong KP,et al. Parallel optimal reactive power flow based on cooperative co-evolutionary differential evolution and power system decomposition[J]. IEEE Trans. on Power Systems, 2007,22(1):249-257.
[6]  李英,江全元,Jiang L,等. 基于并行协同粒子群优化算法和PC集群的无功优化[J]. 电力系统自动化, 2009,34(19):42-47,80. Li Ying,Jiang Quanyuan,Jiang L,et al.Optimal reactive power dispatch based on a parallel cooperative particle swarm optimization algorithm and PC-cluster[J].Automation of Electric Power Systems,2009,34(19)
[7]  赵维兴,刘明波,孙斌,等. 基于诺顿等值的多区域系统无功优化分解协调算法[J]. 电网技术, 2009,33(11):44-48,54. Zhao Weixing,Liu Mingbo,Sun Bin,et al.A Norton equivalence based decomposition and coordination algorithm of reactive power optimization for multi-regional power grid[J].Power System Technology,2009,33(11)
[8]  刘志文,刘明波. 基于Ward等值的多区域无功优化分解协调算法[J]. 电力系统自动化, 2010,34(14):63-69. Liu Zhiwen,Liu Mingbo.A decomposition and coordination algorithm for multi-area reactive power optimization based on Ward equivalent[J].Automation of Electric Power Systems,2010,34(14)
[9]  赵维兴,刘明波,缪楠林,等. 基于对角加边模型的多区域无功优化分解算法[J]. 电力系统自动化, 2008,32(4):25-29,40. Zhao Weixing,Liu Mingbo,Miao Nanlin,et al.A decomposition algorithm for multi-area reactive-power optimization based on the block bordered diagonal model[J].Automation of Electric Power Systems,2008,32(4)
[10]  赵维兴,刘明波. 基于近似牛顿方向的多区域无功优化解耦算法[J]. 中国电机工程学报, 2007,27(25):18-24. Zhao Weixing,Liu Mingbo.A decomposition algorithm applied to multi-area reactive-power optimization based on approximate Newton directions[J].Proceedings of the CSEE,2007,27(25)
[11]  Yan Wei,Wen Lili,Li W,et al. Decomposition coordination interior point method and its application to multi-area optimal reactive power flow[J]. Electrical Power and Energy Systems, 2011,33:55-60.
[12]  程新功,厉吉文,曹立霞,等. 基于电网分区的多目标分布式并行无功优化研究[J]. 中国电机工程学报, 2003,23(10):110-113. Cheng Xingong,Li Jiwen,Cao Lixia,et al.Multi-objective distributed parallel reactive power optimization based on subarea division of the power systems[J].Proceedings of the CSEE,2003,23(10)
[13]  刘宝英,杨仁刚. 采用辅助问题原理的多分区并行无功优化算法[J]. 中国电机工程学报, 2009,29(7):47-51. Liu Baoying,Yang Rengang.Multi-subarea parallel reactive power optimization based on APP[J].Proceedings of the CSEE,2009,29(7)
[14]  Hur D,Park J K,Kim B H,et al. Evaluation of convergence rate in the auxiliary problem principle for distributed optimal power flow[J]. IEE Proceedings of Generation, Transmission and Distribution,2002,149(5):525-532.
[15]  Bakirtzis A G,Biskas PN. Decentralised DC load flow and applications to transmission management[J]. IEE Proceedings of Generation, Transmission and Distribution,2002,149(5):600-606.
[16]  程新功,厉吉文,曹立霞,等. 电力系统最优潮流的分布式并行算法[J]. 电力系统自动化, 2003,27(24):23-27. Cheng Xingong,Li Jiwen,Cao Lixia,et al.Distributed and parallel optimal power flow solution of electric power systems[J].Automation of Electric Power Systems,2003,27(24)
[17]  Balho H K,Ross B. Coarse-grained distributed optimal power flow[J]. IEEE Trans. on Power Systems, 1997,12(2):932-939.
[18]  Necoara I,Suykens A K. Application of a smoothing technique to decomposition in convex optimization[J]. IEEE Trans. on Automatic Control, 2008,53(11):2674-2679.
[19]  Necoara I,Doan D,Suykens A K,et al. Application of the proximal center decomposition method to distributed model predictive control[C]//Proceedings of the 47th IEEE Conference on Decision and Control. Cancun, Mexico:IEEE,2008:2900-2905.
[20]  Nesterov Y. Smooth minimization of non-smooth functions[J]. Mathematical Programming, 2005,103(1):127-152.
[21]  Tsiaflakis P,Necoara I,Suykens A K,et al. Improved dual decomposition based optimization for DSL dynamic spectrum management[J]. IEEE Trans. on Signal Processing, 2010,58(4):2230-2245.
[22]  PACS-L. Power systems test case archive[EB/OL]. Washington:University of Washington.[2011-10-.http://www.ee.washington.edu/research/pstca/.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133