全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

电力大数据及其在电网公司的应用

DOI: 10.13334/j.0258-8013.pcsee.2014.S.012, PP. 85-92

Keywords: 电力大数据,关键技术,关键特征,应用场景,成熟度模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着智能电网的建设和发展,电力行业已步入大数据时代。该文提出电力大数据的概念并阐释其关键特征,展示了电力大数据的关键技术并指出中国电力公司可提升的新能力。最后总结电力大数据潜在的应用场景并提出一种用于评价应用优先级的成熟度模型。电力大数据现处于起步阶段,需产业公司、科研组织、设备供应商和政府机构的共同合作,大数据的发展定会给电力行业带来价值。

References

[1]  Chen Kang,Zheng Weimin.Cloud computing:system instances and current research[J].Journal of Software,2009,20(5):1337-1348(in Chinese).
[2]  Grossman R,Gu Y.Data mining using high performance data clouds:experiments studies using sector and sphere[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM,2008:920-927.
[3]  Ji Changqing,Li Yu,Qiu Wenming,et al.Big data processing in cloud computing environments[C/OL]//2012 International Symposium on Pervasive Systems,Algorithms and Networks.[2013-10-.http://www. researchgate.net/publication/235933401_Big_Data_Processing_in_Cloud_Computing_Environments.
[4]  Weiss A.Computing in the cloud[J].ACM Networker,2007,11(4):18-25.
[5]  Patel A B,Birla M,Nair U.Addressing big data problem using hadoop and map reduce[J].2012(12):6-8.
[6]  王秀磊,刘鹏.大数据关键技术[J].中兴通讯技术,2013,19(4):17-21.
[7]  Wang Xiulei,Liu Peng.Key big-data technologies [J].ZTE Technology Journal,2013,19(4):17-21(in Chinese).
[8]  Manyika J,Chui M,Brown B,et al.Big data,the next frontier for innovation competition and productivity [EB/OL].[2013-12-.http://www.mckinsey.com/ insights/business_technology/big_data_the_next_frontier_for_innovation.
[9]  弗洛 罗伯特.掌握大数据,掌握信息时代的脉搏[N].中国简报,2012-12-19.
[10]  Fonow Robert.In charge of big data—to grasp the pulse of the information age[N].China Brief,2012-12-19(in Chinese).
[11]  Demchenko Y,Zhao Zhiming,Grosso P,et al.Addressing big data challenges for scientific data infrastructure[C]// 2012 IEEE 4th International Conference on Cloud Computing Technology and Science.Taipei,Taiwan:IEEE,2012:614-617.
[12]  巩雪清,金澈清,王晓玲,等.数据密集型科学与工程:要求与挑战[J].中国计算机学报,2012,35(8):156-1578.
[13]  Gong Xueqing,Jin Cheqing,Wang Xiaoling,et al.Data-intensive science and engineering:requirements and challenges[J].Chinese Journal of Computers,2012,35(8):1563-1578(in Chinese).
[14]  孟小峰,慈翔.大数据管理:概念,技术与挑战[J].计算机研究与发展,2013,50(1):146-169
[15]  Meng Xiaofeng,Ci Xiang.Big data management:concepts,techniques and challenges[J].Journal of Computer Research and Development,2013,50(1):146-169(in Chinese).
[16]  Wigan M R,Clarke R.Big data’s big unintended consequences[J].IEEE,2013,46(6):46-53.
[17]  Hertzog C.How utilities can gain maximum benefits from consumer data analytics[EB/OL].(2012-03-05)[2013-10- .http://theenergycollective.com/christine-hertzog/ 78527/how-utilities-can-gain-maximum-benefits-consumer-data-analytics.
[18]  王蒙.传感器+大数据:GE打造工业互联网[N/OL].IT精力网.(2012-11-30)[2013-12-.http://www.ctocio. com/ccnews/9954.html.
[19]  Wang Meng.Sensors + Big Data:GE build industrial internet[N/OL].CTOCIO.(2012-11-30)[2013-12-.http://www.ctocio.com/ccnews/9954.html(in Chinese).
[20]  Bohan B,Farrar B,Luigs M.Addressing the big data concern in the utilities sector[N/OL].(2011-09-01) [2013-10-.http://www.elp.com/articles/powergrid_ international/print/volume-16/issue-9/features/addressing-the-big-data-concern-in-the-utilities-sector.html.
[21]  Nahon G.Computer information processing technology in “Big Data” era[J].The World Science,2012(2):30-31.
[22]  陈康,郑纬民.云计算:系统实例与研究现状[J].软件学报,2009,20(5):1337-1348.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133