全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于云模型的谐波电流异常检测

DOI: 10.13334/j.0258-8013.pcsee.2014.25.023, PP. 4395-4401

Keywords: 云模型,谐波电流,异常检测,异常阈值,总体样本方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

电力系统谐波监测是电能质量监测系统的主要工作内容,谐波电流检测能为分析设备运行状态提供依据,提出了一种基于云模型检测谐波电流是否异常的方法。根据正常运行条件下谐波电流的日95%概率值和日最大值分别建立正态云模型,利用云模型的熵来衡量正常运行方式时谐波电流的波动范围,根据正态云外隶属曲线的外边界确定谐波电流的异常阈值。同时提出了谐波电流异常检测的修正算法及简化公式。将需检测的谐波电流与谐波异常阈值进行比较,可实现谐波电流的异常检测;基于云模型确定谐波电流异常阈值可以克服基于总体样本方法确定的异常阈值受样本随机不确定性影响较大的问题,同时考虑了正常数据的波动问题,确定出的异常阈值更符合客观实际,不易造成正常数据的误判。实际工程算例验证了该方法的正确性,同时说明了总体样本方法的不足。

References

[1]  肖湘宁.电能质量分析与控制[M].北京:中国电力出版社,2004:3-4.Xiao Xiangning.Power quality analysis and control [M].Beiing:China Electric Power Press,2004:3-4(in Chinese).
[2]  张永超.电力系统不良数据检测和辨识方法研究[D].成都:西南交通大学,2006.Zhang Yongchao.Bad data detection and identification in power system[D].Chengdu:Southwest Jiaotong University,2006(in Chinese).
[3]  吴通华,蒋雷海,李友军,等.电力系统电气量异常采样值实时辨识方法[J].电力系统自动化,2011,35(23):95-98.Wu Tonghua,Jiang Leihai,Li Youjun,et al.Real time identification of abnormal sampling data of power system[J].Automation of Electric Power Systems,2011,35(23):95-98(in Chinese).
[4]  王雷,张瑞青,盛伟,等.基于支持向量机的回归预测和异常数据检测[J].中国电机工程学报,2009,29(8):92-96.Wang Lei,Zhang Ruiqing,Sheng Wei,et al.Regression forecast and abnormal data detection based on support vector regression[J].Proceedings of the CSEE,2009,29(8):92-96(in Chinese).
[5]  Asheibi A,Stirling D,Sutanto D.Analyzing harmonic monitoring data using supervised and unsupervised learning[J].IEEE Transactions on Power Delivery,2009,24(1):293-301.
[6]  Gilreath P,Peterson M,Singh B N.A novel technique for identification and condition monitoring of nonlinear loads in power systems[C]//International Conference on Power Electronics,Drives and Energy Systems.New Delhi,India:IEEE,2006:1-7.
[7]  江苏省电力试验研究院有限公司.一种电能质量稳态指标预警方法:中国,CN201110067687.7[P].2011-08-31.Jiang Su Electric Power Test Research Institute Corporation.A steady-state power quality index early warning method:China,CN201110067687.7 [P].2011-08-31(in Chinese).
[8]  国家标准局.GB 4883-1985 数据的统计处理和解释正态样本异常值的判断和处理[S].北京:中国标准出版社,1985.China Standard Bureau.GB 4883-1985 Statistical interpretation of data-detection and handling of outlying observations in normal sample[S].Beijing:China Standard Press,1985(in Chinese).
[9]  党倩,骆嘉伟,王东.一种基于云理论的异常检测算法研究[J].计算机应用研究,2009,26(10):3724-3726.Dang Qian,Luo Jiawei,Wang Dong.Research of anomaly detection algorithm based on cloud theory[J].Application Research of Computers,2009,26(10):3724-3726(in Chinese).
[10]  李德毅,杜鹢.不确定性人工智能[M].北京:国防工业出版社,2005:23-25.Li Deyi,Du Yi.Uncertainty of artificial intelligence [M].Beijing:National Defence Industry Press,2005:23-25(in Chinese).
[11]  李德毅.知识表示中的不确定性[J].中国工程科学,2000,2(10):73-79.Li Deyi.Uncertainty in knowledge representation [J].Engineering Science,2000,2(10):73-79(in Chinese).
[12]  孙晓璐,马静,李渊博,等.基于云模型的电压暂降设备敏感度评估[J].电力系统保护与控制,2011,39(4):100-104.Sun Xiaolu,Ma Jing,Li Yuanbo,et al.Equipment sensitivity evaluation based on cloud model due to voltage sags[J].Power System Protection and Control,2011,39(4):100-104(in Chinese).
[13]  陈昊,李兵.基于逆向云和概念提升的定性评价方法[J].武汉大学学报:理学版,2010,56(6):683-688.Chen Hao,Li Bing.Qualitative evaluation method based on backward cloud and concept generalizing[J].Journal of Wuhan University:Natural Science Edition,2010,56(6):683-688(in Chinese).
[14]  刘晓石,陈鸿建,何腊梅.概率论与数理统计[M].北京:科学出版社,2000:16-17.Liu Xiaoshi,Chen Hongjian,He Lamei.Probability and mathematical statistics[M].Beijing:Science Press,2000:16-17(in Chinese).
[15]  王国胤.云模型与粒计算[M].北京:科学出版社,2012:78-80.Wang Guoyin.Cloud model and grain calculation [M].Beijing:Science Press,2012:78-80(in Chinese).
[16]  李德毅,刘常昱,淦文燕.正态云模型的重尾性质证明[J].中国工程科学,2011,13(4):20-23.Li Deyi,Liu Changyu,Gan Wenyan.Proof of the heavy- tailed property of normal cloud model[J].Engineering Science,2011,13(4):20-23(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133