全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于出力模式匹配的风电集群点多时间尺度功率预测

DOI: 10.13334/j.0258-8013.pcsee.2014.25.018, PP. 4350-4358

Keywords: 风电场集群,功率预测,元组向量,模式匹配,元组向量时间扭曲

Full-Text   Cite this paper   Add to My Lib

Abstract:

风电集群点出力预测是提高大规模风电接入条件下电力系统运行安全性和经济性的有效手段。针对风电集群点出力的模式性,利用元组向量表示其变化趋势,通过元组向量时间扭曲法对当前出力模式在历史出力模式库中进行匹配,以时间偏移量、时间压缩率、幅值压缩率3个修正参数表征相似出力模式的差异性,结合匹配结果对风电集群点出力进行预测。实际应用结果表明,该方法可以取得较为理想的效果,参数修正能够提高预测精度,使预测结果更加合理。

References

[1]  夏澍,周明,李庚银.考虑线路安全校核的含风电电力系统有功和备用协调调度[J].中国电机工程学报,2013,33(13):18-26.Xia Shu,Zhou Ming,Li Gengyin.A coordinated active power and reserve dispatch approach for wind power integrated power systems considering line security verification[J].Proceedings of the CSEE,2013,33(13):18-26(in Chinese).
[2]  艾欣,刘晓.基于可信性理论的含风电场电力系统动态经济调度[J].中国电机工程学报,2011,31(S1):12-18.Ai Xin,Liu Xiao.Dynamic economic dispatch for wind farms integrated power system based on credibility theory[J].Proceedings of the CSEE,2011,31(S1):12-18(in Chinese).
[3]  张丽英,叶廷路,辛耀中,等.大规模风电接入电网的相关问题及措施[J].中国电机工程学报,2010,30(25):1-9.Zhang Liying,Ye Tinglu,Xin Yaozhong,et al.Problems and measures of power grid accommodating large scale wind power[J].Proceedings of the CSEE,2010,30(25):1-9(in Chinese).
[4]  刘兴杰.风电输出功率预测方法与系统[D].北京:华北电力大学,2011.Liu Xingjie.Wind power prediction approach and system[D].Beijing:North China Electric Power University,2011(in Chinese).
[5]  孙川永,陶树旺,罗勇,等.高分辨率中尺度数值模式在风电场风速预报中的应用[J].太阳能学报,2009,30(8):1097-1099.Sun Chuanyong,Tao Shuwang,Luo Yong,et al.The application of high resolution mesoscale model in wind speed forecasting in wind farm[J].Acta Energiae Solaris Sinica,2009,30(8):1097-1099(in Chinese).
[6]  董广涛,穆海振,周伟东,等.基于气象数值模式的风电功率预测系统[J].太阳能学报,2012,33(5):776-781.Dong Guangtao,Mu Haizhen,Zhou Weidong,et al.A wind-power forecast system based on the meteorological model[J].Acta Energiae Solaris Sinica,2012,33(5):776-781(in Chinese).
[7]  杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5.Yang Xiuyuan,Xiao Yang,Chen Shuyong.Wind speed and generated power forecasting in wind farm [J].Proceedings of the CSEE,2005,25(11):1-5(in Chinese).
[8]  夏冬.基于时间序列分析的大型风电场功率预测方法研究[D].北京:北京交通大学,2012.Xia Dong.Study on wind power prediction method based on time series analysis[D].Beijing:Beijing Jiaotong University,2012(in Chinese).
[9]  张辉.基于IPSO-GA神经网络的风电场功率短期预测方法研究[D].重庆:重庆大学,2012.Zhang Hui.Study on short-term wind power prediction method based on IPSO-GA neural network [D].Chongqing:Chongqing University,2012(in Chinese).
[10]  史洁.基于支持向量机的风电场功率短期预测方法研究[D].北京:华北电力大学,2009.Shi Jie.Short term wind power prediction based on support vector machine[D].Beijing:North China Electric Power University,2009(in Chinese).
[11]  叶林,刘鹏.基于经验模态分解和支持向量机的短期风电功率组合预测模型[J].中国电机工程学报,2011,31(31):102-108.Ye Lin,Liu Peng.Combined model based on EMD-SVM for short-term wind power prediction[J].Proceedings of the CSEE,2011,31(31):102-108(in Chinese).
[12]  白永祥,房大中,侯佑华,等.内蒙古电网区域风电功率预测系统[J].电网技术,2010,34(10):157-162.Bai Yongxiang,Fang Dazhong,Hou Youhua,et al.Regional wind power forecasting system for Inner Mongolia power grid[J].Power System Technology,2010,34(10):157-162(in Chinese).
[13]  陈倩.区域风电功率一体化预测方法研究[D].北京:华北电力大学,2011.Chen Qian.Aggregated wind power prediction for a region[D].Beijing:North China Electric Power University,2011(in Chinese).
[14]  陈颖,孙荣富,吴志坚,等.基于统计升尺度方法的区域风电场群功率预测[J].电力系统自动化,2013,37(7):1-5.Chen Ying,Sun Rongfu,Wu Zhijian,et al.A regional wind power forecasting method based on statistical up-scaling approach[J].Automation of Electric Power Systems,2013,37(7):1-5(in Chinese).
[15]  吴兴华,周晖,黄梅.基于模式识别的风电场风速和发电功率预测[J].继电器,2008,36(1):27-32.Wu Xinghua,Zhou Hui,Huang Mei.Wind speed and generated power forecasting based on pattern recognition in wind farm[J].Relay,2008,36(1):27-32(in Chinese).
[16]  刘燕华,田茹,张东英,等.风电出力平滑效应的分析与应用[J].电网技术,2012,36(12):1-5.Liu Yanhua,Tian Ru,Zhang Dongying,et al.Analysis and application of wind farm output smoothing effect [J].Power System Technology,2012,36(12):1-5(in Chinese).
[17]  杨永强.基于相似性分析的时间序列数据挖掘研究[D].成都:西南交通大学,2007.Yang Yongqiang.Research on time series data mining based on simlarity analysis[D].Chengdu:Southwest Jiaotong University,2007(in Chinese).
[18]  Keogh E.Fast similarity search in the presence of longitudinal scaling in time series databases[C]//Ninth IEEE International Conference on Tools with Artificial Intelligence.Newport Beach,California,USA:IEEE,1997:578-584.
[19]  徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化,2011,35(12):20-26.Xu Man,Qiao Ying,Lu Zongxiang.A comprehensive error evaluation method for short-term wind power prediction[J].Automation of Electric Power Systems,2011,35(12):20-26(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133