全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于G-范数和sum-范数的三相交流级联系统稳定性判据

DOI: 10.13334/j.0258-8013.pcsee.2014.24.013, PP. 4092-4100

Keywords: 三相交流级联系统,稳定性判据,G-范数,sum-范数,保守性比较

Full-Text   Cite this paper   Add to My Lib

Abstract:

在三相交流级联系统中,源模块以及负载模块之间的相互作用将导致整个系统性能下降,甚至有可能导致系统不稳定,尤其是在含有恒功率负载的系统中表现尤为明显。通过分析系统的小信号模型可以看出,模块之间由于相互耦合而产生的稳定性问题和子模块的端口阻抗以及导纳有着直接关系。因此,基于子模块端口阻抗以及导纳的稳定性判据是分析系统级稳定性问题的有效方法。目前,基于子模块阻抗以及导纳的稳定性判据已经广泛应用于直流系统。但是,由于交流系统和直流系统在系统特性上的内在差异,目前广泛应用于直流系统的稳定性判据无法直接使用于交流系统。根据交流系统的系统特性,提出一种基于端口阻抗以及导纳矩阵的G-范数和sum-范数的稳定性判据。且根据矩阵计算的特点,对所提出的稳定性判据做进一步改进,以减少判据的保守性。最终,将所提判据和现有的范数判据进行保守性的比较,可以看出,所提判据的保守性最小,更利于实际应用。

References

[1]  Vesti S,Suntio T,Oliver J A,et al.Impedance-Based Stability and Transient-Performance Assessment Applying Maximum Peak Criteria[J].IEEE Transactions on Power Electronics,2013,28(5):2099-2104.
[2]  Belkhayat M.Stability criteria for AC power systems with regulated loads[D].Indiana US:Purdue University,1997.
[3]  Chandrasekaran S,Borojevic D,Lindner D.Input filter interaction in three phase AC-DC converters[C]//IEEE Power Electronics Specialists Conference.Charleston,USA:IEEE,1999:987-992.
[4]  Mao H,Boroyevic D,Lee F.Novel reduced-order small-signal model of a three-phase PWM rectifier and its application in control design and system analysis[J].IEEE Transactions on Power Electronics,1998,13(3):511-521.
[5]  Burgos R,Boroyevic D,Wang F,et al.On the Ac stability of high power factor three-phase rectifiers[C]//Energy Conversion Congress and Exposition.Atlanta,USA:IEEE,2010:2047-2054.
[6]  Burgos R,Boroyevic D,Wang F,et al.Ac stability of high power factor multi-pulse rectifiers[C]//Energy Conversion Congress and Exposition.Phoenix,USA:IEEE,2011:3758-3765.
[7]  Middlebrook R.Design techniques for preventing input-filter oscillations in switched-mode regulators[C]// Proceedings of POWERCON 5,Fifth National Solid-State Power Conversion Conference.San Francisco,USA,1978.
[8]  Middlebrook R.Input filter considerations in design and application of switching regulators[C]//IEEE Industry Applications Society Annual Meeting.Chicago,USA:IEEE,1976:94-107.
[9]  Wildrick C,Lee F,Cho B,et al.A method of defining the load impedance specification for a stable distributed power system[J].IEEE Transactions on Power Electronics,1995,10(3):280-285.
[10]  Feng X,Ye Z,Xing K,et al.Impedance specification and impedance improvement for DC distributed power system[C]//Power Electronics Specialists Conference,Charleston.USA:IEEE,1999:889-894.
[11]  Feng X,Ye Z,Xing K,et al.Individual load impedance specification for a stable DC distributed power system [C]//Applied Power Electronics Conference and Exposition.Dallas,USA:IEEE,1999:923-929.
[12]  Feng X,Liu J,Lee F.Impedance specifications for stable DC distributed power systems[J].IEEE Transactions on Power Electronics,2002,17(2):157-162.
[13]  Sudhoff S D,Glover S F,Lamm P T,et al.Admittance space stability analysis of power electronic systems[J].IEEE Transactions on Aerospace and Electronic Systems,2000,36(3):965-973.
[14]  Sudhoff S D,Glover S F.Three-dimensional stability analysis of DC power electronics based systems[C]/ /Power Electronics Specialists Conference,Galway.Ireland:IEEE,2000:101-106.
[15]  刘增,刘进军.带变流器负载的三相交流电源系统稳定性判据的研究[J].中国电机工程学报,2012,32(25):143-148.Liu Zeng,Liu Jinjun.Stability criterion for three-phase ac power systems with converter load[J].Proceedings of the CSEE,2012,32(25):143-148(in Chinese).
[16]  MacFarlane A,Postlethwaite I.The generalized Nyquist stability criterion and multivariable root loci[J].International Journal of Control,1977,25(1):81-127.
[17]  MacFarlane A.Return-difference and return-ratio matrices and their use in analysis and design of multivariable feedback control systems[J].Proceedings of the Institution of Electrical Engineers,1970,117(10):2037-2049.
[18]  Rahimi A,Emadi A.An analytic investigation of DC/DC power electronic converters with constant power loads in vehicular power systems[J].IEEE Transactions on Power Electronics,2009,68(6):2689-2702.
[19]  Rahimi A,Williamson A,Emadi A.Loop-cancellation technique:A novel nonlinear feedback to overcome the destabilizing effect of constant-power loads[J].IEEE Transactions on Vehicle Technology,2010,59(2):650-661.
[20]  Emadi A,Khaligh A,Rivetta C,et al.Constant power loads and negative impedance instability in automotive systems:Definition,modeling,stability,and control of power electronic converters and motor drives[J].IEEE Transactions on Vehicle Technology,2006,55(4):1112-1125.
[21]  刘欣博,周元钧.具有双级LC滤波器的恒功率负载系统在大扰动下的稳定性[J].中国电机工程学报,2011,31(27):29-35.Liu Xinbo,Zhou Yuanjun.Large signal stability criteria for constant power loads with double-stage LC filters[J].Proceedings of the CSEE,2011,31(27):29-35(in Chinese).
[22]  Francis G,Burgos R,Boroyevic D,et al.An algorithm and implementation system for measuring impedance in the D-Q domain[C]//Energy Conversion Congress and Exposition.Phoenix,USA:IEEE,2011:3221-3228.
[23]  Varga.Ger?gorin and His Circles[M].Springer-Verlag,2004.
[24]  MacFarlane A.Return-difference and return-ratio matrices and their use in analysis and design of multivariable feedback control systems[J].Proceedings of the Institution of Electrical Engineers,1971,118(7):946-947.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133