全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

周向非均匀热流边界条件下混合熔融盐在太阳能高温吸热管内的强化换热研究

DOI: 10.13334/j.0258-8013.pcsee.2014.20.013, PP. 3341-3346

Keywords: 太阳能热发电站,混合熔融盐,吸热管,内插纽带,强化换热

Full-Text   Cite this paper   Add to My Lib

Abstract:

周向非均匀高密度热流引发的过热问题一直影响着太阳能热发电站中高温吸热器的运行安全,混合熔融盐作为高温传热工质的引入使得这一问题更加严峻。该文建立了混合熔融盐在太阳能高温吸热管内对流换热与强化换热数值计算模型,研究了周向非均匀热流边界条件下混合熔融盐在光滑管与强化换热管内的换热性能。结果显示:内插螺旋纽带强化换热方式对周向非均匀热流边界条件下吸热管的管壁温度和管内流体温度分布均匀性有明显改善。间隙率C与扭曲率γ的减小都有助于强化换热效果的增加,特别是C=0,即内插纽带完全接触管壁时,强化传热效果最为显著,但与此同时小的间隙率与扭曲率也造成阻力系数的增大。

References

[1]  杨敏林,杨晓西,林汝谋,等.太阳能热发电技术与系统[J].热能动力工程,2008,23(3):221-229.
[2]  Yang Minlin,Yang Xiaoxi,Lin Rumou,et al.Solar energy-based thermal power generation technologies and their systems[J].Journal of Engineering for Thermal Energy and Power,2008,23(3):221-229(in Chinese).
[3]  中国科学院能源战略研究组.中国能源可持续发展战略专题研究[M].北京:科学出版社,2006:1-10.
[4]  Chinese Academy of Energy Strategy Study Group.Strategy research on China’s energy substainable development[M].Beijing:Science Press,2006:1-10(in Chinese).
[5]  Remero M,Marcos M J,Tellez F M,et al.Distributed power from solar tower systems:AMIUS approach [J].Solar Energy,2000,67(3):249-264.
[6]  国家标准化管理委员会.GB/T26972—2011 聚光型太阳能热发电术语[S].2011.
[7]  Standardization Administration of the People's Republic of China.GB/T26972—2011 Vocabulary of concentrating solar thermal power[S].2011.
[8]  Pacheco J E,Ralph M E,Chavez J M,et al.Results of molten salt panel and component experiments for solar central receivers:cold fill,freeze/thaw,thermal cycling and shock,and instrumentation tests,SAND94-2525 [R].New Mexico and Livermore,California:Sandia National Laboratories,1995.
[9]  Litwin R.Receiver system:lesson learned from Solar Two[R].New Mexico and Livermore,California:Sandia National Laboratories,Albuquerque,2002.
[10]  Kearneya D,Kellyb B,Herrmannc U,et al.Engineering aspects of a molten salt heat transfer fluid in a trough solar field[J].Energy,2004,29(5-6):861-870.
[11]  Roberto G,Pietro T.Solar linear Fresnel collector using molten nitrates as heat transfer fluid[J].Energy,2011,36(2):1048-1056.
[12]  Pacheco E.Results of molten salt panel and component experiments for solar central receivers:cold fill,freeze/thaw,thermal cycling and shock,and instrumentation tests[R].New Mexico and Livermore,California:Sandia National Laboratories,Albuquerque,1994.
[13]  Lu J F,Ding J,Yang J P.Solidification and melting behaviors and characteristics of molten salt in cold filling pipe[J].International Journal of Heat and Mass Transfer,2010,53(9-10):1628-1635.
[14]  Lu J F,Ding J,Yang J P.Heat transfer performance of an external receiver pipe under unilateral concentrated solar radiation[J].Solar Energy,2010,84(11):1879-1887.
[15]  Peng Q,Ding J,Wei X L,et al.Thermal stability and corrosion properties of molten nitrate salts[C]// International Conference on Applied Energy,Singapore,2010.
[16]  Lu J F,Ding J,Yang J P.Filling dynamics and phase change of molten salt in cold receiver pipe during initial pumping process[J].International Journal of Heat and Mass Transfer,2013,64(9):98-107.
[17]  Lu J F,Shen X Y,Ding J,et al.Transition and turbulent convective heat transfer of molten salt in spirally grooved tube[J].Experimental Thermal and Fluid Science,2013,47(5):180-185.
[18]  Wu Y T,Ren N,Ma C F,et al.Experimental study on thermal performance of mixed nitrate and carbonate salts[C]//14th International Heat Transfer Conference,Washington,2010.
[19]  Liu B,Wu Y T,Ma C F,et al.Experimental study for turbulent convective heat transfer with molten salt in a circular tube[C]//Proceedings of the International Heat Transfer Conference,Washington,DC,USA,2010.
[20]  Chen C,Wu Y T,Wang S T,et al.Experimental investigation on enhanced heat transfer in transversally corrugated tube with molten salt[J].Experimental Thermal and Fluid Science,2013,47(5):108-116.
[21]  Wu Y T,Chen C,Liu B,et al.Investigation on forced convective heat transfer of molten salts in circular tubes[J].International Communications in Heat and Mass Transfer,2012,39(10):1550-1555.
[22]  Li X,Kong W Q,Chang C,et al.Thermal model and thermodynamic performance of molten salt cavity receiver[J].Renewable Energy,2010,35(5):981-988.
[23]  王建楠,李鑫,常春.太阳能塔式热发电站熔融盐吸热器过热故障的影响因素分析[J].中国电机工程学报,2010,29(30):107-114.
[24]  Wang Jiannan,Li Xin,Chang Chun.Analysis of the influence factors on the overheat of molten salt receiver in solar tower power plants[J].Proceedings of the CSEE,2010,29(30):107-114 (in Chinese).
[25]  Zhang Q Q,Li X,Chang C,et al.An experimental study:Thermal performance of molten salt cavity receivers [J].Applied Thermal Engineering,2013,50(1):334-341.
[26]  Zhang Q Q,Li X,Wang Z F,et al.Experimental and theoretical analysis of a dynamic test method for molten salt cavity receiver[J].Renewable Energy,2013,50(2):214-221.
[27]  常春,张强强,李鑫.周向非均匀热流边界条件下太阳能高温吸热管内湍流传热特性研究[J].中国电机工程学报,2012,32(17):104-109.
[28]  Chang Chun,Zhang Qiangqiang,Li Xin.Turbulent heat transfer characteristics in solar thermal absorber tubes with circumferentially non-uniform heat flux boundary condition[J].Proceedings of CSEE,2012,32(17):104-109(in Chinese).
[29]  陶文铨.传热与流动问题的多尺度数值模拟:方法与应用[M].北京:科学出版社,2009:520-528.
[30]  Tao Wenquan.Multiscale numerical simulation of heat transfer and flow:methods and applications[M].Beijing:Science Press,2009:520-528(in Chinese).
[31]  孙东亮,王良壁.含扭曲带管内流动与传热的数值模拟[J].化工学报,2004,55(9):1422-1427.
[32]  Sun Dongliang,Wang Liangbi.Numerical simulation of fluid flow and heat transfer in tube inserting twisted-tape [J].Journal of Chemical Industry and Engineering,2004,55(9):1422-1427(in Chinese).
[33]  张琳,钱红卫,宣益民,等.内置纽带换热管三维流动与传热数值模拟[J].机械工程学报,2005,41(7):66-70.
[34]  Zhang Lin,Qian Hongwei,Xuan Yimin,et al.Numerical simulation of the three dimensional fluid flow and heat transfer of heat exchanger tubes with twisted-tape insert[J].Chinese Journal of Mechanical Engineering,2005,41(7):66-70(in Chinese).
[35]  Eiamsa-ard S,Wongcharee K,Sripattanapipat S.3-D numerical simulation of swirling flow and convective heat transfer in a circular tube induced b means of loose-fit twisted tapes[J].International Communications in Heat and Mass Transfer,2009(36):947-955.
[36]  过增元,黄素逸.场协同原理与强化传热新技术[M].北京:中国电力出版社,2004:216-223.
[37]  Guo Zengyuan,Huang Suyi.Field synergy principle and new technologies of enhanced heat transfer[M].Beijing:China Electric Power Press,2004:216-223(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133