全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于模糊粗糙集与改进聚类的神经网络风速预测

DOI: 10.13334/j.0258-8013.pcsee.2014.19.016, PP. 3162-3169

Keywords: 风电场,风速预测,神经网络,模糊粗糙集,属性约简,改进聚类,加权欧氏距离

Full-Text   Cite this paper   Add to My Lib

Abstract:

提高风电功率预测精度是保障风电场和电力系统安全稳定运行的有效手段。神经网络方法已在风电功率预测中得到了广泛应用,并取得了不错的效果,而网络的输入变量与训练样本对其预测性能有着重要影响。基于此,提出一种基于模糊粗糙集与改进聚类的神经网络风速预测方法。采用模糊粗糙集对影响风电场风速的多种因素进行了属性约简,得到优化了的模型输入及各属性对风速的重要性;采用基于属性重要性的加权欧氏距离对传统聚类进行改进,建立了各聚类预测模型,并提取相似性较高的数据作为训练样本训练各类预测模型,对训练样本实现了优选;根据当前属性值选择匹配的模型对风速进行预测。以华北地区某风电场实际数据为例进行了实验,结果表明该方法能在较少的模型输入下有效地提高预测精度。方法方法

References

[1]  迟永宁,刘艳华,王伟胜,等.风电接入对电力系统的影响[J].电网技术,2007,31(3):77-81.
[2]  Chi Yongning,Liu Yanhua,Wang Weisheng,et al.Study on impact of wind power integration on power system[J].Power System Technology,2007,31(3):77-81(in Chinese).
[3]  杨秀媛,肖洋,陈树勇.风电场风速与发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5.
[4]  Yang Xiuyuan,Xiao Yang,Chen Shuyong.Wind speed and generated power in wind farm[J].Proceedings of the CSEE,2005,25(11):1-5(in Chinese).
[5]  雷亚洲,王胜伟,戴慧珠,等.风电对电力系统运行的价值分析[J].电网技术,2002,26(5):10-14.
[6]  Lei Yazhou,Wang Weisheng,Dai Huizhu,et al.Analysis of wind power value to power system[J].Power System Technology,2002,26(5):10-14(in Chinese).
[7]  冯双磊,王胜伟,刘纯,等.风电场功率预测方法研究[J].中国电机工程学报,2010,30(2):1-6.
[8]  Feng Shuanglei,Wang Weisheng,Liu Chun,et al.Study on the physical approach to wind power prediction[J].Proceedings of the CSEE,2010,30(2):1-6(in Chinese).
[9]  Pelikan E,Eben K,Resler J,et al.Wind power forecast by an empirical model using NWP output[C]// International Conference on Environment and Electrical Engineering.Prague,Czech Republic:IEEE,2010:45-48.
[10]  Kavasseri R G,Seetharaman K.Day-ahead wind speed foresting using f-ARIMA models[J].Renewable Energy,2009,5(34):1388-1393.
[11]  冬雷,王丽婕,高爽,等.基于混沌时间序列的大型风电场发电功率预测建模与研究[J].电工技术学报,2011,23(12):125-128.
[12]  Dong Lei,Wang Lijie,Gao Shuang,et al.Modeling and analysis of prediction of wind power generation in the large wind farm based on chaotic time series[J].Transactions of China Electrotechnical Society,2011,23(11):125-128(in Chinese).
[13]  范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报,2008,28(34):118-123.
[14]  Fan Gaofeng,Wang Weisheng,Liu Chun,et al.Wind power prediction based on artificial neural networks[J].Proceedings of the CSEE,2008,28(34):118-123(in Chinese).
[15]  潘迪夫,刘辉,李燕飞.基于时间序列和卡尔曼滤波算法的风电场风速预测优化模型[J].电网技术,2008,32(7):82-86.
[16]  Pan Difu,Liu Hui,Li Yanfei.A wind speed forecasting optimization model for wind farms based on times series analysis and Kalman filter algorithm[J].Power System Technology,2008,32(7):82-86(in Chinese).
[17]  Alexiadis M C,Dokopoulos P S,Sahsamanoglou H S.Wind speed and power forecasting based on spatial correlation models[J].IEEE Transactions on Energy Conversion,1999,3(14):836-842.
[18]  Gong Li,Jing Shi.On comparing three artificial neural networks for wind speed forecasting[J].Applied Energy,2010,7(87):2313-2320.
[19]  丁志勇,杨萍,杨曦,等.基于连续时间段聚类的支持向量机风电功率预测方法[J].电力系统自动化,2012,36(14):131-135.
[20]  Ding Zhiyong,Yang Ping,Yang Xi,et al.Wind power prediction method based on sequential time clustering support vector machine[J].Automation of Electric Power Systems,2012,36(14):131-135(in Chinese).
[21]  张文修,吴伟志,梁吉业,等.粗糙集理论与方法[M].北京:科学出版社,2001:12-16.
[22]  Zhang Wenxiu,Wu Weizhi,Liang Jiye,et al.Rough set theory and method[M].Beijing:Science Press,2001:12-16(in Chinese).
[23]  Richard J,Shen Qiang.Fuzzy-rough sets for descriptive dimensionality reduction[C]//Proceeding of the 11th International Conference on Fuzzy Systems.Hawaii,USA:IEEE,2002:29-34.
[24]  Radzikowska A M,Kerre E E.A comparative study of fuzzy rough set[J].Fuzzy Set and Systems,2002,126(1):137-156.
[25]  李大虎,江全元,曹一家.基于聚类的支持向量机回归模型在电力系统暂态稳定预测中的应用[J].电工技术学报,2006,21(7):75-80.
[26]  Li Dahu,Jiang Quanyuan,Cao Yijia.Clustering based on support vector regression model and its application in power system transient stability prediction[J].Transactions of China Electrotechnical Society,2006,21(7):75-80(in Chinese).
[27]  刘炳祥,李海林.基于模糊粗糙集的因素权值分配方法[J].控制与决策,2007,22(12):1438-1440.
[28]  Liu Bingxiang,Li Hailin.Method of factor weights allocation based on combination of fuzzy rough set[J].Control and Decision,2007,22(12):1438-1440(in Chinese).
[29]  米增强,刘兴杰,张燕青,等.基于混沌分析和神经网络的风速直接多步预测[J].太阳能学报,2011,32(6):901-905.
[30]  Mi Zengqiang,Liu Xingjie,Zhang Yanqing,et al.Direct multi-step forecasting of short-term wind speed based on chaos analysis and neural network[J].Acta Energiae Solaris Sinica,2011,32(6):901-905(in Chinese).
[31]  杨锡运,孙宝军,张新房,等.基于相似数据的支持向量机短期风速预测仿真研究[J].中国电机工程学报,2012,32(4):35-40.
[32]  Yang Xiyun,Sun Baojun,Zhang Xinfang,et al.Short-term wind speed forecasting based on support vector machine with similar data[J].Proceedings of the CSEE,2012,32(4):35-40(in Chinese).
[33]  王志勇,郭创新,曹一家.基于模糊粗糙集和神经网络的短期负荷预测方法[J].中国电机工程学报,2005,25(19):7-11.
[34]  Wang Zhiyong,Guo Chuangxin,Cao Yijia.A method for load forecasting integrating fuzzy rough set with artificial neural network[J].Proceedings of the CSEE,2005,25(19):7-11(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133