全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于超球球心间距多类支持向量机的滚动轴承故障分类

DOI: 10.13334/j.0258-8013.pcsee.2014.14.014, PP. 2319-2325

Keywords: 滚动轴承,故障分类,多类支持向量机,超球秋心间距,经验模态分解

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了降低滚动轴承故障智能分类的训练时间并提高分类精度,提出了一种滚动轴承正常、内、外环故障及不同故障严重程度的多状态分类方法。该方法首先采用峭度值结合相关系数法确定集合经验模态分解结果中包含主要状态信息的固有模态函数;再将其组成特征矩阵,利用奇异值分解所得奇异值作为特征向量;最后在采用改进分类规则的超球多类支持向量机分类时,提出由各状态超球球心间距中的最值来确定多类分类器核参数的选取范围,缩小选取区间,最终实现滚动轴承的多状态分类。实验结果表明,提出的滚动轴承多状态分类方法可以减少分类器的训练时间,提高分类精度。方法

References

[1]  王国彪,何正嘉,陈雪峰,等.机械故障诊断基础研究“何去何从”[J].机械工程学报,2013,49(1):63-72. Wang Guobiao,He Zhengjia,Chen Xuefeng,et al.Basic research on machinery fault diagnosis—what is the prescription[J].Journal of Mechanical Engineering,2013,49(1):63-72(in Chinese).
[2]  Pan Yuna,Chen Jin,Li Xinglin.Bearing performance degradation assessment based on lifting wavelet packet decomposition and fuzzy c-means[J].Mechanical Systems and Signal Processing,2010,24(2):559-566.
[3]  Xu Hongbo,Chen Guohua.An intelligent fault identification method of rolling bearings based on LSSVM optimized by improved PSO[J].Mechanical Systems and Signal Processing,2013,35(1-2):167-175.
[4]  杨江天,赵明元.改进双谱和经验模态分解在牵引电机轴承故障诊断中的应用[J].中国电机工程学报,2012,32(18):116-122. Yang Jiangtian,Zhao Mingyuan.Fault diagnosis of traction motor bearings using modified bispectrum and empirical mode decomposition[J].Proceedings of the CSEE,2012,32(18):116-122(in Chinese).
[5]  Wu Zhaohua,Huang Norden E.Ensemble empirical mode decomposition:A noise assisted data analysis method [J].Advances in Adaptive Data Analysis,2009,1(1):1-41.
[6]  郭奇,刘卜瑜,史立波,等.基于二次EEMD的Wigner-Ville分布旋转机械故障信号分析及试验研究[J].振动与冲击,2012,31(13):129-133+153. Guo Qi,Liu Buyu,Shi Libo,et al.Experimental study and fault signals analysis of rotating machinery based on dual EEMD and wigner-ville distribution[J].Journal of Vibration and Shock,2012,31(13):129-133+153(in Chinese).
[7]  Cheng Jusheng,Yu Dejie,Yang Yu.A fault diagnosis approach for roller bearings based on EMD method and AR model[J].Mechanical Systems and Signal Processing,2006,20(2):350-362.
[8]  康守强,王玉静,杨广学,等.基于经验模态分解和超球多类支持向量机的滚动轴承故障诊断方法[J].中国电机工程学报,2011,31(14):96-102. Kang Shouqiang,Wang Yujing,Yang Guangxue,et al.Rolling bearing fault diagnosis method using empirical mode decomposition and hypersphere multiclass support vector machine[J].Proceedings of the CSEE,2011,31(14):96-102(in Chinese).
[9]  蒋永华,汤宝平,董绍江.自适应Morlet小波降噪方法及在轴承故障特征提取中的应用[J].仪器仪表学报,2010,31(12):2712-2717. Jiang Yonghua,Tang Baoping,Dong Shaojiang.Denoising method based on adaptive Morlet wavelet and its application in rolling bearing fault feature extraction[J].Chinese Journal of Scientific Instrument,2010,31(12):2712-2717(in Chinese).
[10]  汤宝平,蒋永华,张详春.基于形态奇异值分解和经验模态分解的滚动轴承故障特征提取方法[J].机械工程学报,2010,46(5):37-42+48. Tang Baoping,Jiang Yonghua,Zhang Xiangchun.Feature extraction method of rolling bearing fault based on singular value decomposition-morphology filter and empirical mode decomposition[J].Journal of Mechanical Engineering,2010,46(5):37-42+48(in Chinese).
[11]  韩中合,朱霄珣,李文华.基于K-L散度的EMD虚假分量识别方法研究[J].中国电机工程学报,2012,32(11):112-117. Han Zhonghe,Zhu Xiaoxun,Li Wenhua.A false component identification method of EMD based on Kullback-leibler divergence[J].Proceedings of the CSEE,2012,32(11):112-117(in Chinese).
[12]  胡爱军,马万里,唐贵基.基于集成经验模态分解和峭度准则的滚动轴承故障特征提取方法[J].中国电机工程学报,2012,32(11):106-111. Hu Aijun,Ma Wanli,Tang Guiji.Rolling bearing fault feature extraction method based on ensemble empirical mode decomposition and kurtosis criterion[J].Proceedings of the CSEE,2012,32(11):106-111(in Chinese).
[13]  褚福磊,彭志科,冯志鹏,等.机械故障诊断中的现代信号处理方法[M].北京:科学出版社,2009:122-123. Chu Fulei,Peng Zhike,Feng Zhipeng,et al.Modern signal processing method in machinery fault diagnosis [M].Beijing:Science Press,2009:122-123(in Chinese).
[14]  Peng Z K,Tse P W,Chu F L.A comparison study of improved Hilbert-Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing [J].Mechanical Systems and Signal Processing,2005,19(5):974-988.
[15]  张孝远,周建中,黄志伟,等.基于粗糙集和多类支持向量机的水电机组振动故障诊断[J].中国电机工程学报,2010,30(20):88-93. Zhang Xiaoyuan,Zhou Jianzhong,Huang Zhiwei,et al.Vibrant fault diagnosis for hydro-turbine generating unit based on rough sets and multi-class support vector machine[J].Proceedings of the CSEE,2010,30(20):88-93(in Chinese).
[16]  朱美琳,刘向东,陈世福.用球结构的支持向量机解决多分类问题[J].南京大学学报:自然科学版,2003,39(2):153-158. Zhu Meilin,Liu Xiangdong,Chen Shifu.Salving the problem of multi-class pattern recognition with sphere- structured support vector machines[J].Journal of Nanjing University:Natural Sciences,2003,39(2):153-158(in Chinese).
[17]  故磊,吴慧中,肖亮.基于新的决策规则的球形支持向量机分类算法[J].系统仿真学报,2008,20(11):2901-2904. Gu Lei,Wu Huizhong,Xiao Liang.Sphere-structured support vector machines classification algorithm based on new decision rule[J].Journal of System Simulation,2008,20(11):2901-2904(in Chinese).
[18]  杨国安.机械设备故障诊断实用技术[M].北京:中国石化出版社, 2007:244-245. Yang Guoan.Practical technology of machinery device fault diagnosis[M].Beijing:China Petrochemical Press, 2007:244-245(in Chinese).
[19]  Kenneth A Loparo.Bearing data center.[EB/OL].Case western reserve university,http://www.eecs.case.edu/ labo- ratory/bearing/welcome_overview.htm.2000[2013-.
[20]  何正嘉,陈进,王太勇,等.机械故障诊断理论及应用[M].北京:高等教育出版社,2010:1-3. He Zhengjia,Chen Jin,Wang Taiyong,et al.Theories and applications of machinery fault diagnostics[M].Beijing:Higher Education Press,2010:1-3(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133