全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

牛顿类潮流计算方法的收敛性分析

DOI: 10.13334/j.0258-8013.pcsee.2014.13.022, PP. 2196-2200

Keywords: 初值敏感,牛顿类潮流计算,潮流收敛,初值

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对牛顿类潮流计算的初值敏感性问题,提出牛顿类潮流计算的收敛性定理,给出牛顿类潮流计算收敛的充分条件,解决用牛顿类方法进行潮流计算时因初值选取不当导致潮流收敛过慢或者无法收敛的问题.通过所提定理,可评价所选初值能否保证该牛顿类潮流算法收敛,若潮流收敛则继续潮流计算,否则可以针对性的对初值进行调整.这就避免因初值选取不当造成的冗余潮流计算甚至病态潮流的出现.通过对IEEE57、118节点系统的仿真和通辽电网潮流计算的实例分析,验证了牛顿类潮流计算收敛性定理的正确性和有效性,提高了牛顿类算法在潮流计算中的在线实用性.

References

[1]  Baker K,Hug G,Li X.Inclusion of inter-temporal constraints into a distributed Newton-Raphson method [C]//North American Power Symposium.Champaign,IL,2012:1-6.
[2]  郭烨,张伯明,吴文传,等.直角坐标下含零注入约束的电力系统状态估计修正牛顿法[J].中国电机工程学报,2012,32(19):96-100. Guo Ye,Zhang Boming,Wu Wenchuan,et al.Power system state estimation solution with zero injection constraints using modified Newton method [J].Proceedings of the CSEE,2012,32(19):96-100(in Chinese).
[3]  郭烨,张伯明,吴文传,等.极坐标下含零注入约束的电力系统状态估计的修正牛顿法与快速解耦估计[J].中国电机工程学报,2012,32(19):113-117. Guo Ye,Zhang Boming,Wu Wenhuan,et al.Power system state estimation solution with zero injection constraints using modified Newton method and fast decoupled method in polar coordinate[J].Proceedings of the CSEE,2012,32(19):113-117(in Chinese).
[4]  苏永福,周海云.迭代序列逼近非线性映像不动点集的一个几何结构[J].数学学报中文版,2006,49(6):1321-1326. Su Yongfu,Zhou Haiyun.A geometric result for approximating fixed points of nonlinear mappings by iteration sequence[J].Acta Mathematica Sinica,Chinese Series,2006,49(6):1321-1326(in Chinese).
[5]  刘凯,陈红坤,向铁元,等.以对称反对称分裂预条件处理GMRES(m)的布景区牛顿法潮流计算[J].电网技术,2009,33(19):123-126. Liu Kai,Chen Hongkun,Xiang Tieyuan,et al.Inexact Newton flow computation based on hermitian and skew-hermitian splitting preconditioners GMRES(m) [J].Power System Technology,2009,33(19):123-126(in Chinese).
[6]  Lo K L,Meng Z J.Newton-like method for line outage simulation[J].IEE Proceedings of Generation,Transmission and Distribution,2004,151(2):225-231.
[7]  Losi A,Russo M.Dispersed generation modeling for object-oriented distribution load flow[J].IEEE Transactions on Power Delivery,2005,20(2):1532-1540.
[8]  Yao Yubin,Wang Dan,Wu Zhiliang,et al.Convergence analysis on the power flow methods for distribution networks with small impedance branches[C]//Third International Conference on DRPT 2008.Nanjing:IEEE,2008:1158-1163.
[9]  Andrey P,Sergey Y.Power flow calculation by combination of Newton-Raphson method and Newton’s method in optimization[C]//35th Annual Conference of IEEE IECON '09.Porto,2009:1693-1696.
[10]  Chen Ying,Shen Chen.A Jacobian-free Newton- GMRES(m) method with adaptive preconditioner and its application for power flow calculations[J].IEEE Transactions on Power Systems,2006,21(3):1096-1103.
[11]  Yang Hui,Wen Fushuan,Wang Liping.Newton-Raphson on power flow algorithm and broyden method in the distribution system[C]//IEEE 2nd International Power and Energy Conference.Johor Bahru,2008:1613-1618.
[12]  Lagace P J,Vuong M H,Kamwa I.Improving power flow convergence by Newton with a levenberg-marquardt method[C]//IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century.Pittsburgh,PA,2008:1-6.
[13]  Huang W T,Yao K C.New network sensitivity-based approach for real-time complex power flow calculation [J].IEEE Transactions on Smart Grid,2012,3(2):959-967.
[14]  Jegatheesan R,Nor N M,Romlie M F.Newton-Raphson power flow solution employing systematically constructed Jacobian matrix[C]//IEEE 2nd International Power and Energy Conference on 2008.Johor Bahru,2008:180-185.
[15]  Moura A A F,Moura A P.Newton-Raphson on decoupled load flow with constant matrices of condutance and susceptance[C]//2010 9th IEEE International Conference on Industry Applications.Sao Paulo,2010:1-6.
[16]  Yao Yu-bin,Wang Dan,Chen Yong,et al.The effect of small impedance branches on the convergence of the Newton Raphson power flow[C]//Third International Conference on DRPT 2008.Nanjuing,2008:1141-1146.
[17]  Abdelaziz M M A,Farag H E,El-Saadany E F,et al.A novel and generalized three-phase power flow algorithm for islanded microgrids using a newton trust region method[J].IEEE Transactions on Power Systems,2013,28(1):190-201.
[18]  Idema R,Lahaye D J P,Vuik C,et al.Scalable Newton-Krylov solver for very large power flow problems[J].IEEE Transactions on Power Systems,2012,27(1):390-396.
[19]  Zhu Yongli,Yao Jianguo.An improved Newton load flow for distributed generation based on different control strategies[C]//2011 Asia-Pacific Power and Energy Engineering Conference.Wuhan,2011:1-5.
[20]  Hajforoosh S,Nabavi S M H,Masoum M A S.Coordinated aggregated-based particle swarm optimisation algorithm for congestion management in restructured power market by placement and sizing of unified power flow controller[J].IET Science, Measurement & Technology,2012,6(4):267-278.
[21]  李国庆,李雪峰,沈杰,等.牛顿法和内点罚函数法相结合的概率可用功率交换能力计算[J].中国电机工程学报,2003,23(8):17-22. Li Guoqing,Li Xuefeng,Shen Jie,et al.A probability act computation by a combination of Newton’s method with sumt interior point method[J].Proceedings of the CSEE,2003,23(8):17-22(in Chinese).
[22]  Vanti M V,Gonzaga C C.On the Newton intenor-point method for nonlinear optimal power flow[C]//2003 IEEE Bologna Tech Conference Proceedings.Bologna,2003,4.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133