全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Diversity in the Regulation of Autophagy and Mitophagy: Lessons from Parkinson's Disease

DOI: 10.4061/2011/789431

Full-Text   Cite this paper   Add to My Lib

Abstract:

Selective mitochondrial degradation through autophagy (mitophagy) has emerged as an important homeostatic mechanism in a variety of organisms and contexts. Complete clearance of mitochondria can be observed during normal maturation of certain mammalian cell types, and during certain forms of neuronal cell death. In recent years, autophagy dysregulation has been implicated in toxin-injured dopaminergic neurons as well as in major genetic models of Parkinson's disease (PD), including α-synuclein, leucine-rich repeat kinase 2 (LRRK2), parkin, PTEN-induced kinase 1 (PINK1), and DJ-1. Indeed, PINK1-parkin interactions may form the basis of a mechanism by which dissipation of the inner mitochondrial membrane potential can trigger selective mitochondrial targeting for autophagy. Multiple signals are likely to exist, however, depending upon the trigger for mitophagy. Similarly, the regulation of basal or injury-induced autophagy does not always follow canonical pathways described for nutrient deprivation. Implications of this regulatory diversity are discussed in the context of neuronal function and survival. Further studies are needed to address whether alterations in autophagy regulation play a directly injurious role in PD pathogenesis, or if the observed changes reflect impaired, appropriate, or excessive autophagic responses to other forms of cellular injury. 1. Introduction Macroautophagy represents an evolutionarily conserved response to nutrient stresses, which also plays an increasingly recognized role in basal cellular maintenance and in cellular responses to injury. The important role of macroautophagy in brain development and quality control was highlighted by observations that mice engineered for deficiency in key autophagy genes exhibit spontaneous neurodegeneration with ubiquitinated protein aggregates [1, 2]. Macroautophagy (hereafter, autophagy unless otherwise specified) is also implicated in mitochondrial quality control, as altered mitochondria accumulate under basal conditions of autolysosomal dysfunction [3–6], and mitophagy is further induced in cells exhibiting damaged mitochondria [7, 8]. Mitochondrial autophagy induced in response to mitochondrial damage or neuronal injury may play either prosurvival [7, 9] or prodeath roles [10, 11]. As mechanisms underlying different models of injury-induced autophagy and mitophagy are discovered, the concept of distinct regulatory inputs to a core autophagy pathway has emerged. In sympathetic neurons, it was noted that the phosphoinositide 3-kinase inhibitor 3-methyladenine (3-MA) delayed apoptosis

References

[1]  M. Komatsu, S. Waguri, T. Chiba et al., “Loss of autophagy in the central nervous system causes neurodegeneration in mice,” Nature, vol. 441, no. 7095, pp. 880–884, 2006.
[2]  T. Hara, K. Nakamura, M. Matsui et al., “Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice,” Nature, vol. 441, no. 7095, pp. 885–889, 2006.
[3]  Y. Zhang, H. Qi, R. Taylor, W. Xu, L. F. Liu, and S. Jin, “The role of autophagy in mitochondria maintenance: characterization of mitochondrial functions in autophagy-deficient S. cerevisiae strains,” Autophagy, vol. 3, no. 4, pp. 337–346, 2007.
[4]  J. J. Jennings, J. H. Zhu, Y. Rbaibi, X. Luo, C. T. Chu, and K. Kiselyov, “Mitochondrial aberrations in mucolipidosis type IV,” Journal of Biological Chemistry, vol. 281, no. 51, pp. 39041–39050, 2006.
[5]  M. Komatsu, S. Waguri, T. Ueno et al., “Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice,” Journal of Cell Biology, vol. 169, no. 3, pp. 425–434, 2005.
[6]  G. Krebiehl, S. Ruckerbauer, L. F. Burbulla et al., “Reduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson's disease-associated protein DJ-1,” PLoS ONE, vol. 5, no. 2, article e9367, 2010.
[7]  R. K. Dagda, S. J. Cherra, S. M. Kulich, A. Tandon, D. Park, and C. T. Chu, “Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission,” Journal of Biological Chemistry, vol. 284, no. 20, pp. 13843–13855, 2009.
[8]  W.-X. Ding, H.-M. Ni, M. Li et al., “Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming,” Journal of Biological Chemistry, vol. 285, no. 36, pp. 27879–27890, 2010.
[9]  R. K. Dagda and C. T. Chu, “Mitochondrial quality control: insights on how Parkinson's disease related genes PINK1, parkin, and Omi/HtrA2 interact to maintain mitochondrial homeostasis,” Journal of Bioenergetics and Biomembranes, vol. 41, no. 6, pp. 473–479, 2009.
[10]  J. H. Zhu, C. Horbinski, F. Guo, S. Watkins, Y. Uchiyama, and C. T. Chu, “Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death,” American Journal of Pathology, vol. 170, no. 1, pp. 75–86, 2007.
[11]  R. K. Dagda, J. Zhu, S. M. Kulich, and C. T. Chu, “Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson's disease,” Autophagy, vol. 4, no. 6, pp. 770–782, 2008.
[12]  L. Xue, G. C. Fletcher, and A. M. Tolkovsky, “Autophagy is activated by apoptotic signalling in sympathetic neurons: an alternative mechanism of death execution,” Molecular and Cellular Neurosciences, vol. 14, no. 3, pp. 180–198, 1999.
[13]  L. Xue, G. C. Fletcher, and A. M. Tolkovsky, “Mitochondria are selectively eliminated from eukaryotic cells after blockade of caspases during apoptosis,” Current Biology, vol. 11, no. 5, pp. 361–365, 2001.
[14]  J. Zhang and P. A. Ney, “NIX induces mitochondrial autophagy in reticulocytes,” Autophagy, vol. 4, no. 3, pp. 354–356, 2008.
[15]  H. H. Pua, J. Guo, M. Komatsu, and Y. W. He, “Autophagy is essential for mitochondrial clearance in mature T lymphocytes,” Journal of Immunology, vol. 182, no. 7, pp. 4046–4055, 2009.
[16]  M. Matsui, A. Yamamoto, A. Kuma, Y. Ohsumi, and N. Mizushima, “Organelle degradation during the lens and erythroid differentiation is independent of autophagy,” Biochemical and Biophysical Research Communications, vol. 339, no. 2, pp. 485–489, 2006.
[17]  K. G. Lyamzaev, O. K. Nepryakhina, V. B. Saprunova et al., “Novel mechanism of elimination of malfunctioning mitochondria (mitoptosis): formation of mitoptotic bodies and extrusion of mitochondrial material from the cell,” Biochimica et Biophysica Acta, vol. 1777, no. 7-8, pp. 817–825, 2008.
[18]  D. Narendra, A. Tanaka, D. F. Suen, and R. J. Youle, “Parkin is recruited selectively to impaired mitochondria and promotes their autophagy,” Journal of Cell Biology, vol. 183, no. 5, pp. 795–803, 2008.
[19]  C. Vives-Bauza, C. Zhou, Y. Huang et al., “PINK1-dependent recruitment of Parkin to mitochondria in mitophagy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 1, pp. 378–383, 2010.
[20]  P. Anglade, S. Vyas, F. Javoy-Agid, et al., “Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease,” Histology and Histopathology, vol. 12, no. 1, pp. 25–31, 1997.
[21]  J. H. Zhu, F. Guo, J. Shelburne, S. Watkins, and C. T. Chu, “Localization of phosphorylated ERK/MAP kinases to mitochondria and autophagosomes in lewy body diseases,” Brain Pathology, vol. 13, no. 4, pp. 473–481, 2003.
[22]  P. I. Moreira, S. L. Siedlak, X. Wang et al., “Autophagocytosis of mitochondria is prominent in Alzheimer disease,” Journal of Neuropathology and Experimental Neurology, vol. 66, no. 6, pp. 525–532, 2007.
[23]  J. H. Zhu, S. M. Kulich, T. D. Oury, and C. T. Chu, “Cytoplasmic aggregates of phosphorylated extracellular signal-regulated protein kinases in lewy body diseases,” American Journal of Pathology, vol. 161, no. 6, pp. 2087–2098, 2002.
[24]  G. Perry, H. Roder, A. Nunomura et al., “Activation of neuronal extracellular receptor kinase (ERK) in Alzheimer disease links oxidative stress to abnormal phosphorylation,” NeuroReport, vol. 10, no. 11, pp. 2411–2415, 1999.
[25]  K. E. Larsen, E. A. Fon, T. G. Hastings, R. H. Edwards, and D. Sulzer, “Methamphetamine-induced degeneration of dopaminergic neurons involves autophagy and upregulation of dopamine synthesis,” Journal of Neuroscience, vol. 22, no. 20, pp. 8951–8960, 2002.
[26]  R. Castino, G. Lazzeri, P. Lenzi et al., “Suppression of autophagy precipitates neuronal cell death following low doses of methamphetamine,” Journal of Neurochemistry, vol. 106, no. 3, pp. 1426–1439, 2008.
[27]  C. Gomez-Santos, I. Ferrer, A. F. Santidrián, M. Barrachina, J. Gil, and S. Ambrosio, “Dopamine induces autophagic cell death and α-synuclein increase in human neuroblastoma SH-SY5Y cells,” Journal of Neuroscience Research, vol. 73, no. 3, pp. 341–350, 2003.
[28]  S. Dadakhujaev, H. S. Noh, E. J. Jung et al., “Autophagy protects the rotenone-induced cell death in α-synuclein overexpressing SH-SY5Y cells,” Neuroscience Letters, vol. 472, no. 1, pp. 47–52, 2010.
[29]  M. Niso-Santano, J. M. B.-S. Pedro, R. Gómez-Sánchez et al., “ASK1 overexpression accelerates paraquat-induced autophagy via endoplasmic reticulum stress,” Toxicological Sciences, vol. 119, no. 1, pp. 156–168, 2011.
[30]  K. C. Choi, S. H. Kim, J. Y. Ha, S. T. Kim, and J. H. Son, “A novel mTOR activating protein protects dopamine neurons against oxidative stress by repressing autophagy related cell death,” Journal of Neurochemistry, vol. 112, no. 2, pp. 366–376, 2010.
[31]  A. Petiot, E. Ogier-Denis, E. F. C. Blommaart, A. J. Meijer, and P. Codogno, “Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pa7thways that control macroautophagy in HT-29 cells,” Journal of Biological Chemistry, vol. 275, no. 2, pp. 992–998, 2000.
[32]  Y. T. Wu, H. L. Tan, G. Shui et al., “Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase,” Journal of Biological Chemistry, vol. 285, no. 14, pp. 10850–10861, 2010.
[33]  L. H. P. Caro, P. J. A. M. Plomp, E. J. Wolvetang, C. Kerkhof, and A. J. Meijer, “3-Methyladenine, a inhibitor of autophagy, has multiple effects on metabolism,” European Journal of Biochemistry, vol. 175, no. 2, pp. 325–329, 1988.
[34]  S. Pattingre, A. Tassa, X. Qu et al., “Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy,” Cell, vol. 122, no. 6, pp. 927–939, 2005.
[35]  Y. Zhong, Q. J. Wang, X. Li et al., “Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex,” Nature Cell Biology, vol. 11, no. 4, pp. 468–476, 2009.
[36]  K. Matsunaga, T. Saitoh, K. Tabata et al., “Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages,” Nature Cell Biology, vol. 11, no. 4, pp. 385–396, 2009.
[37]  R. Castino, N. Bellio, C. Follo, D. Murphy, and C. Isidoro, “Inhibition of Pi3k class III-dependent autophagy prevents apoptosis and necrosis by oxidative stress in dopaminergic neuroblastoma cells,” Toxicological Sciences, vol. 117, no. 1, pp. 152–162, 2010.
[38]  C. T. Chu, J. Zhu, and R. Dagda, “Beclin 1-independent pathway of damage-induced mitophagy and autophagic stress: implications for neurodegeneration and cell death,” Autophagy, vol. 3, no. 6, pp. 663–666, 2007.
[39]  A. M. Cuervo, L. Stafanis, R. Fredenburg, P. T. Lansbury, and D. Sulzer, “Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy,” Science, vol. 305, no. 5688, pp. 1292–1295, 2004.
[40]  M. Martinez-Vicente, Z. Talloczy, S. Kaushik et al., “Dopamine-modified α-synuclein blocks chaperone-mediated autophagy,” Journal of Clinical Investigation, vol. 118, no. 2, pp. 777–778, 2008.
[41]  T. Vogiatzi, M. Xilouri, K. Vekrellis, and L. Stefanis, “Wild type α-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells,” Journal of Biological Chemistry, vol. 283, no. 35, pp. 23542–23556, 2008.
[42]  M. Xilouri, T. Vogiatzi, K. Vekrellis, D. Park, and L. Stefanis, “Abberant α-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy,” PLoS ONE, vol. 4, no. 5, article e5515, 2009.
[43]  W. H. Yu, B. Dorado, H. Y. Figueroa et al., “Metabolic activity determines efficacy of macroautophagic clearance of pathological oligomeric α-synuclein,” American Journal of Pathology, vol. 175, no. 2, pp. 736–747, 2009.
[44]  S. J. Chinta, J. K. Mallajosyula, A. Rane, and J. K. Andersen, “Mitochondrial alpha-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo,” Neuroscience Letters, vol. 486, no. 3, pp. 235–239, 2010.
[45]  A. R. Winslow, C.-W. Chen, S. Corrochano et al., “α-synuclein impairs macroautophagy: implications for Parkinson's disease,” Journal of Cell Biology, vol. 190, no. 6, pp. 1023–1037, 2010.
[46]  V. N. Pivtoraiko, A. J. Harrington, B. J. Mader et al., “Low-dose bafilomycin attenuates neuronal cell death associated with autophagy-lysosome pathway dysfunction,” Journal of Neurochemistry, vol. 114, no. 4, pp. 1193–1204, 2010.
[47]  D. MacLeod, J. Dowman, R. Hammond, T. Leete, K. Inoue, and A. Abeliovich, “The familial Parkinsonism gene LRRK2 regulates neurite process morphology,” Neuron, vol. 52, no. 4, pp. 587–593, 2006.
[48]  E. D. Plowey, S. J. Cherra, Y. J. Liu, and C. T. Chu, “Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells,” Journal of Neurochemistry, vol. 105, no. 3, pp. 1048–1056, 2008.
[49]  S. J. Cherra III, S. M. Kulich, G. Uechi et al., “Regulation of the autophagy protein LC3 by phosphorylation,” Journal of Cell Biology, vol. 190, no. 4, pp. 533–539, 2010.
[50]  J. Alegre-Abarrategui, H. Christian, M. M. P. Lufino et al., “LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model,” Human Molecular Genetics, vol. 18, no. 21, pp. 4022–4034, 2009.
[51]  T. Kitada, A. Pisani, M. Karouani et al., “Impaired dopamine release and synaptic plasticity in the striatum of Parkin-/- mice,” Journal of Neurochemistry, vol. 110, no. 2, pp. 613–621, 2009.
[52]  G. Oyama, K. Yoshimi, S. Natori et al., “Impaired in vivo dopamine release in parkin knockout mice,” Brain Research, vol. 1352, no. C, pp. 214–222, 2010.
[53]  J. C. Greene, A. J. Whitworth, I. Kuo, L. A. Andrews, M. B. Feany, and L. J. Pallanck, “Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 7, pp. 4078–4083, 2003.
[54]  D. Chen, F. Gao, B. Li et al., “Parkin mono-ubiquitinates Bcl-2 and regulates autophagy,” Journal of Biological Chemistry, vol. 285, no. 49, pp. 38214–38223, 2010.
[55]  A. Wood-Kaczmar, S. Gandhi, Z. Yao et al., “PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons,” PLoS ONE, vol. 3, no. 6, article e2455, 2008.
[56]  V. A. Morais, P. Verstreken, A. Roethig et al., “Parkinson's disease mutations in PINK1 result in decreased complex I activity and deficient synaptic function,” EMBO Molecular Medicine, vol. 1, no. 2, pp. 99–111, 2009.
[57]  A. Kathrin Lutz, N. Exner, M. E. Fett et al., “Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation,” Journal of Biological Chemistry, vol. 284, no. 34, pp. 22938–22951, 2009.
[58]  S. Michiorri, V. Gelmetti, E. Giarda et al., “The Parkinson-associated protein PINK1 interacts with Beclin1 and promotes autophagy,” Cell Death and Differentiation, vol. 17, no. 6, pp. 962–974, 2010.
[59]  S. Kawajiri, S. Saiki, S. Sato et al., “PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy,” FEBS Letters, vol. 584, no. 6, pp. 1073–1079, 2010.
[60]  E. Ziviani, R. N. Tao, and A. J. Whitworth, “Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates Mitofusin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 11, pp. 5018–5023, 2010.
[61]  A. J. Whitworth, J. R. Lee, V. M. W. Ho, R. Flick, R. Chowdhury, and G. A. McQuibban, “Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson's disease factors Pink1 and Parkin,” Disease Models and Mechanisms, vol. 1, no. 2-3, pp. 168–174, 2008.
[62]  D. P. Narendra, S. M. Jin, A. Tanaka et al., “PINK1 is selectively stabilized on impaired mitochondria to activate Parkin,” PLoS Biology, vol. 8, no. 1, Article ID e1000298, 2010.
[63]  N. Matsuda, S. Sato, K. Shiba et al., “PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy,” Journal of Cell Biology, vol. 189, no. 2, pp. 211–221, 2010.
[64]  I. Irrcher, H. Aleyasin, E. L. Seifert et al., “Loss of the Parkinson's disease-linked gene DJ-1 perturbs mitochondrial dynamics,” Human Molecular Genetics, vol. 19, no. 19, pp. 3734–3746, 2010.
[65]  K. J. Thomas, M. K. McCoy, J. Blackinton, et al., “DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy,” Human Molecular Genetics, vol. 20, no. 1, pp. 40–50, 2011.
[66]  E. Ogier-Denis, S. Pattingre, J. El Benna, and P. Codogno, “Erk1/2-dependent phosphorylation of Gα-interacting protein stimulates its GTPase accelerating activity and autophagy in human colon cancer cells,” Journal of Biological Chemistry, vol. 275, no. 50, pp. 39090–39095, 2000.
[67]  J. Wang, M. W. Whiteman, H. Lian et al., “A non-canonical MEK/ERK signaling pathway regulates autophagy via regulating Beclin 1,” Journal of Biological Chemistry, vol. 284, no. 32, pp. 21412–21424, 2009.
[68]  R. A. González-Polo, M. Niso-Santano, J. M. Morán et al., “Silencing DJ-1 reveals its contribution in paraquat-induced autophagy,” Journal of Neurochemistry, vol. 109, no. 3, pp. 889–898, 2009.
[69]  C. He and D. J. Klionsky, “Regulation mechanisms and signaling pathways of autophagy,” Annual Review of Genetics, vol. 43, pp. 67–93, 2009.
[70]  I. Kissova, M. Deffieu, S. Manon, and N. Camougrand, “Uth1p is involved in the autophagic degradation of mitochondria,” Journal of Biological Chemistry, vol. 279, no. 37, pp. 39068–39074, 2004.
[71]  R. Tal, G. Winter, N. Ecker, D. J. Klionsky, and H. Abeliovich, “Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival,” Journal of Biological Chemistry, vol. 282, no. 8, pp. 5617–5624, 2007.
[72]  T. Kanki, K. Wang, Y. Cao, M. Baba, and D. J. Klionsky, “Atg32 is a mitochondrial protein that confers selectivity during mitophagy,” Developmental Cell, vol. 17, no. 1, pp. 98–109, 2009.
[73]  I. Kim and J. J. Lemasters, “Mitophagy selectively degrades individual damaged mitochondria after photoirradiation,” Antioxidants & Redox Signaling. In press.
[74]  K. Obara and Y. Ohsumi, “Dynamics and function of PtdIns(3)P in autophagy,” Autophagy, vol. 4, no. 7, pp. 952–954, 2008.
[75]  F. Scarlatti, R. Maffei, I. Beau, P. Codogno, and R. Ghidoni, “Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells,” Cell Death and Differentiation, vol. 15, no. 8, pp. 1318–1329, 2008.
[76]  K. S. Yee, S. Wilkinson, J. James, K. M. Ryan, and K. H. Vousden, “PUMA- and Bax-induced autophagy contributes to apoptosis,” Cell Death and Differentiation, vol. 16, no. 8, pp. 1135–1145, 2009.
[77]  S. Tian, J. Lin, J. Zhou et al., “Beclin 1-independent autophagy induced by a Bcl-XL/Bcl-2 targeting compound, Z18,” Autophagy, vol. 6, no. 8, pp. 1032–1041, 2010.
[78]  J. Y. Lee, H. Koga, Y. Kawaguchi et al., “HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy,” EMBO Journal, vol. 29, no. 5, pp. 969–980, 2010.
[79]  A. Iwata, B. E. Riley, J. A. Johnston, and R. R. Kopito, “HDAC6 and microtubules are required for autophagic degradation of aggregated Huntingtin,” Journal of Biological Chemistry, vol. 280, no. 48, pp. 40282–40292, 2005.
[80]  S. Pankiv, T. H. Clausen, T. Lamark, et al., “p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy,” Journal of Biological Chemistry, vol. 282, no. 33, pp. 24131–24145, 2007.
[81]  J. M. M. Tan, E. S. P. Wong, V. L. Dawson, T. M. Dawson, and K. L. Lim, “Lysine 63-linked polyubiquitin potentially partners with p62 to promote the clearance of protein inclusions by autophagy,” Autophagy, vol. 4, no. 2, pp. 251–253, 2008.
[82]  T. Lamark, V. Kirkin, I. Dikic, and T. Johansen, “NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets,” Cell Cycle, vol. 8, no. 13, pp. 1986–1990, 2009.
[83]  I. Novak, V. Kirkin, D. G. McEwan et al., “Nix is a selective autophagy receptor for mitochondrial clearance,” EMBO Reports, vol. 11, no. 1, pp. 45–51, 2010.
[84]  I. Kim, S. Rodriguez-Enriquez, and J. J. Lemasters, “Selective degradation of mitochondria by mitophagy,” Archives of Biochemistry and Biophysics, vol. 462, no. 2, pp. 245–253, 2007.
[85]  J. J. Lemasters, A. L. Nieminen, T. Qian et al., “The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy,” Biochimica et Biophysica Acta, vol. 1366, no. 1-2, pp. 177–196, 1998.
[86]  S. Rodriguez-Enriquez, I. Kim, R. T. Currin, and J. J. Lemasters, “Tracker dyes to probe mitochondrial autophagy (mitophagy) in rat hepatocytes,” Autophagy, vol. 2, no. 1, pp. 39–46, 2006.
[87]  C. T. Chu, “A pivotal role for PINK1 and autophagy in mitochondrial quality control: implications for Parkinson disease,” Human Molecular Genetics, vol. 19, no. 1, pp. R28–R37, 2010.
[88]  W. Lin and U. J. Kang, “Characterization of PINK1 processing, stability, and subcellular localization,” Journal of Neurochemistry, vol. 106, no. 1, pp. 464–474, 2008.
[89]  M. E. Gegg, J. M. Cooper, K.-Y. Chau, M. Rojo, A. H. V. Schapira, and J.-W. Taanman, “Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy,” Human Molecular Genetics, vol. 19, no. 24, pp. 4861–4870, 2010.
[90]  S. Geisler, K. M. Holmstr?m, D. Skujat et al., “PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1,” Nature Cell Biology, vol. 12, no. 2, pp. 119–131, 2010.
[91]  J. Y. Lee, Y. Nagano, J. P. Taylor, K. L. Lim, and T. P. Yao, “Disease-causing mutations in Parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy,” Journal of Cell Biology, vol. 189, no. 4, pp. 671–679, 2010.
[92]  C. Schwarzer, S. Barnikol-Watanabe, F. P. Thinnes, and N. Hilschmann, “Voltage-dependent anion-selective channel (VDAC) interacts with the dynein light chain Tctex1 and the heat-shock protein PBP74,” International Journal of Biochemistry and Cell Biology, vol. 34, no. 9, pp. 1059–1070, 2002.
[93]  D. P. Narendra, L. A. Kane, D. N. Hauser, I. M. Fearnley, and R. J. Youle, “p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both,” Autophagy, vol. 6, no. 8, pp. 1090–1106, 2010.
[94]  J. Zhang and P. A. Ney, “Autophagy-dependent and -independent mechanisms of mitochondrial clearance during reticulocyte maturation,” Autophagy, vol. 5, no. 7, pp. 1064–1065, 2009.
[95]  N. Exner, B. Treske, D. Paquet et al., “Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin,” Journal of Neuroscience, vol. 27, no. 45, pp. 12413–12418, 2007.
[96]  I. E. Clark, M. W. Dodson, C. Jiang et al., “Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin,” Nature, vol. 441, no. 7097, pp. 1162–1166, 2006.
[97]  A. Rakovic, A. Grünewald, P. Seibler et al., “Effect of endogenous mutant and wild-type PINK1 on Parkin in fibroblasts from Parkinson disease patients,” Human Molecular Genetics, vol. 19, no. 16, pp. 3124–3137, 2010.
[98]  J. M. Rose, S. S. Novoselov, P. A. Robinson, and M. E. Cheetham, “Molecular chaperone-mediated rescue of mitophagy by a Parkin RING1 domain mutant,” Human Molecular Genetics, vol. 20, no. 1, pp. 16–27, 2011.
[99]  R. A. Kirkland, R. M. Adibhatla, J. F. Hatcher, and J. L. Franklin, “Loss of cardiolipin and mitochondria during programmed neuronal death: evidence of a role for lipid peroxidation and autophagy,” Neuroscience, vol. 115, no. 2, pp. 587–602, 2002.
[100]  Y. Gu, C. Wang, and A. Cohen, “Effect of IGF-1 on the balance between autophagy of dysfunctional mitochondria and apoptosis,” FEBS Letters, vol. 577, no. 3, pp. 357–360, 2004.
[101]  M. Alemi, A. Prigione, A. Wong et al., “Mitochondrial DNA deletions inhibit proteasomal activity and stimulate an autophagic transcript,” Free Radical Biology and Medicine, vol. 42, no. 1, pp. 32–43, 2007.
[102]  G. Twig, A. Elorza, A. J. A. Molina et al., “Fission and selective fusion govern mitochondrial segregation and elimination by autophagy,” EMBO Journal, vol. 27, no. 2, pp. 433–446, 2008.
[103]  K. E. Miller and M. P. Sheetz, “Axonal mitochondrial transport and potential are correlated,” Journal of Cell Science, vol. 117, no. 13, pp. 2791–2804, 2004.
[104]  V. S. van Laar, B. Arnold, S. J. Cassady, C. T. Chu, E. A. Burton, and S. B. Berman, “Bioenergetics of neurons inhibit the translocation response of Parkin following rapid mitochondrial depolarization,” Human Molecular Genetics, vol. 20, no. 5, pp. 927–940, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133