全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Web-Based Assessment of Visual and Visuospatial Symptoms in Parkinson’s Disease

DOI: 10.1155/2012/564812

Full-Text   Cite this paper   Add to My Lib

Abstract:

Visual and visuospatial dysfunction is prevalent in Parkinson’s disease (PD). To promote assessment of these often overlooked symptoms, we adapted the PD Vision Questionnaire for Internet administration. The questionnaire evaluates visual and visuospatial symptoms, impairments in activities of daily living (ADLs), and motor symptoms. PD participants of mild to moderate motor severity ( ) and healthy control participants (HC, ) completed the questionnaire in paper and web-based formats. Reliability was assessed by comparing responses across formats. Construct validity was evaluated by reference to performance on measures of vision, visuospatial cognition, ADLs, and motor symptoms. The web-based format showed excellent reliability with respect to the paper format for both groups (all ; HC completing the visual and visuospatial section only). Demonstrating the construct validity of the web-based questionnaire, self-rated ADL and visual and visuospatial functioning were significantly associated with performance on objective measures of these abilities (all ). The findings indicate that web-based administration may be a reliable and valid method of assessing visual and visuospatial and ADL functioning in PD. 1. Introduction Visual and visuospatial deficits are common in Parkinson's disease (PD) and negatively affect everyday functioning. The PD Vision Questionnaire was developed to document the prevalence of these impairments [1]. It revealed that the large majority of respondents in the mild to moderate stages of the disease endorsed at least one such symptom [2]. Numerous studies have shown that individuals with PD demonstrate visual and high-order spatial impairments on laboratory-based assessments that cannot be accounted for by motor or executive dysfunction. Visual impairments and in particular, reduced contrast sensitivity, are well established [3–7]. In regard to visuospatial abilities, PD patients are impaired on global/local processing [8], a skill independent of executive demands, as well as mental rotation, way finding, visual construction, visuospatial reasoning, and angle size estimation [9–12]. Visual deficits have been linked to freezing of gait, an extremely debilitating motor symptom [2]. Further, PD-related visual and spatial abilities are predictors of the ability to drive, a visually mediated ADL [13–15] that is important to independent living. Considering their prevalence and negative functional impact, there is a critical need for further information on these underappreciated nonmotor symptoms. A challenge to the assessment of a

References

[1]  A. Lee and J. Harris, “Problems with perception of space in Parkinson's disease: a questionnaire study,” Neuro-Ophthalmology, vol. 22, no. 1, pp. 1–15, 1999.
[2]  S. Davidsdottir, A. Cronin-Golomb, and A. Lee, “Visual and spatial symptoms in Parkinson's disease,” Vision Research, vol. 45, no. 10, pp. 1285–1296, 2005.
[3]  S. Davidsdottir, R. Wagenaar, D. Young, and A. Cronin-Golomb, “Impact of optic flow perception and egocentric coordinates on veering in Parkinson's disease,” Brain, vol. 131, no. 11, pp. 2882–2893, 2008.
[4]  R. A. Armstrong, “Visual signs and symptoms of Parkinson's disease: review,” Clinical and Experimental Optometry, vol. 91, no. 2, pp. 129–138, 2008.
[5]  I. Bodis-Wollner, M. S. Marx, S. Mitra, P. Bobak, L. Mylin, and M. Yahr, “Visual dysfunction in Parkinson's disease. Loss in spatiotemporal contrast sensitivity,” Brain, vol. 110, no. 6, pp. 1675–1698, 1987.
[6]  J. T. Hutton, J. L. Morris, J. W. Elias, R. Varma, and J. N. Poston, “Spatial contrast sensitivity is reduced in bilateral Parkinson's disease,” Neurology, vol. 41, no. 8, pp. 1200–1202, 1991.
[7]  M. M. Amick, A. Cronin-Golomb, and G. C. Gilmore, “Visual processing of rapidly presented stimuli is normalized in Parkinson's disease when proximal stimulus strength is enhanced,” Vision Research, vol. 43, no. 26, pp. 2827–2835, 2003.
[8]  H. E. Schendan, M. M. Amick, and A. Cronin-Golomb, “Role of a lateralized parietal-basal ganglia circuit in hierarchical pattern perception: evidence from Parkinson's disease,” Behavioral Neuroscience, vol. 123, no. 1, pp. 125–136, 2009.
[9]  A. Cronin-Golomb and A. E. Braun, “Visuospatial dysfunction and problem solving in Parkinson's disease,” Neuropsychology, vol. 11, no. 1, pp. 44–52, 1997.
[10]  A. Cronin-Golomb, “Parkinson's disease as a disconnection syndrome,” Neuropsychology Review, vol. 20, no. 2, pp. 191–208, 2010.
[11]  M. M. Amick, H. E. Schendan, G. Ganis, and A. Cronin-Golomb, “Frontostriatal circuits are necessary for visuomotor transformation: mental rotation in Parkinson's disease,” Neuropsychologia, vol. 44, no. 3, pp. 339–349, 2006.
[12]  A. Cronin-Golomb and M. M. Amick, “Spatial abilities in aging, Alzheimer's disease, and Parkinson's disease,” in Handbook of Neuropsychology, F. Boller, Ed., pp. 119–143, Elsevier Press, Amsterdam, Netherlands, 2nd edition, 2001.
[13]  E. Y. Uc, M. Rizzo, S. W. Anderson, J. D. Sparks, R. L. Rodnitzky, and J. D. Dawson, “Impaired navigation in drivers with Parkinson's disease,” Brain, vol. 130, no. 9, pp. 2433–2440, 2007.
[14]  E. Y. Uc, M. Rizzo, S. W. Anderson, J. Sparks, R. L. Rodnitzky, and J. D. Dawson, “Impaired visual search in drivers with Parkinson's disease,” Annals of Neurology, vol. 60, no. 4, pp. 407–413, 2006.
[15]  M. M. Amick, J. Grace, and B. R. Ott, “Visual and cognitive predictors of driving safety in Parkinson's disease patients,” Archives of Clinical Neuropsychology, vol. 22, no. 8, pp. 957–967, 2007.
[16]  C. G. Goetz, G. T. Stebbins, D. Wolff et al., “Testing objective measures of motor impairment in early Parkinson's disease: feasibility study of an at-home testing device,” Movement Disorders, vol. 24, no. 4, pp. 551–556, 2009.
[17]  S. M. Silverstein, S. Berten, P. Olson et al., “Development and validation of a World-Wide-Web-based neurocognitive assessment battery: WebNeuro,” Behavior Research Methods, vol. 39, no. 4, pp. 940–949, 2007.
[18]  M. Younes, J. Hill, J. Quinless et al., “Internet-based cognitive testing in multiple sclerosis,” Multiple Sclerosis, vol. 13, no. 8, pp. 1011–1019, 2007.
[19]  G. V. Kondraske and R. M. Stewart, “Web-based evaluation of Parkinson's disease subjects: objective performance capacity measurements and subjective characterization profiles,” in Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '08), pp. 799–802, August 2008.
[20]  S. H. Wong, Z. Cowen, E. A. Allen, and P. K. Newman, “Internet gambling and other pathological gambling in Parkinson's disease: a case series,” Movement Disorders, vol. 22, no. 4, pp. 591–593, 2007.
[21]  Y. Stern, M. Sano, J. Paulson, and R. Mayeux, “Modified mini-mental state examination: validity and reliability,” Neurology, vol. 37, supplement 1, p. 179, 1987.
[22]  B. K. Scanlon, H. L. Katzen, B. E. Levin, C. Singer, and S. Papapetropoulos, “A formula for the conversion of UPDRS-III scores to Hoehn and Yahr stage,” Parkinsonism and Related Disorders, vol. 14, no. 4, pp. 379–380, 2008.
[23]  A. C. Lee, J. P. Harris, E. A. Atkinson, and M. S. Fowler, “Evidence from a line bisection task for visuospatial neglect in Left Hemiparkinson's disease,” Vision Research, vol. 41, no. 20, pp. 2677–2686, 2001.
[24]  J. Money, A Standard Road Map Test of Direction Sense, Academic Therapy Publications, San Rafael, Calif, USA, 1976.
[25]  A. L. Benton, N. R. Varney, and K. DeS. Hamsher, “Visuospatial judgment. A clinical test,” Archives of Neurology, vol. 35, no. 6, pp. 364–367, 1978.
[26]  C. Jenkinson, R. Fitzpatrick, V. Peto, R. Greenhall, and N. Hyman, “The Parkinson's disease questionnaire (PDQ-39): development and validation of a Parkinson's disease summary index score,” Age and Ageing, vol. 26, no. 5, pp. 353–357, 1997.
[27]  S. Fahn and R. Elton, “Unified Parkinson's disease rating scale,” in Recent Developments in Parkinson's Disease, S Fahn, C. Marsden, and M. Goldstein, Eds., pp. 293–304, Macmillan Healthcare Information, New Jersey, NJ, USA, 1987.
[28]  I. N. Miller and A. Cronin-Golomb, “Gender differences in Parkinson's disease: clinical characteristics and cognition,” Movement Disorders, vol. 25, no. 16, pp. 2695–2703, 2010.
[29]  P. Hagell and C. Nygren, “The 39 item Parkinson's disease questionnaire (PDQ-39) revisited: implications for evidence based medicine,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 78, no. 11, pp. 1191–1198, 2007.
[30]  J. Marinus, M. Visser, P. Martínez-Martín, J. J. Van Hilten, and A. M. Stiggelbout, “A short psychosocial questionnaire for patients with Parkinson's disease: the SCOPA-PS,” Journal of Clinical Epidemiology, vol. 56, no. 1, pp. 61–67, 2003.
[31]  G. R. Jackson and C. Owsley, “Visual dysfunction, neurodegenerative diseases, and aging,” Neurologic Clinics, vol. 21, no. 3, pp. 709–728, 2003.
[32]  E. Leritz, C. Loftis, G. Crucian, W. Friedman, and D. Bowers, “Self-awareness of deficits in Parkinson disease,” Clinical Neuropsychologist, vol. 18, no. 3, pp. 352–361, 2004.
[33]  D. R. Seichepine, S. Neargarder, I. N. Miller, T. M. Riedel, G. C. Gilmore, and A. Cronin-Golomb, “Relation of parkinson's disease subtypes to visual activities of daily living,” Journal of the International Neuropsychological Society, vol. 17, no. 5, pp. 841–852, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133