全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
中国沙漠  2012 

沙冬青属植物在亚洲中部荒漠区的潜在地理分布及驱动因子分析

Keywords: 沙冬青属,潜在分布,驱动因子,MAXENT

Full-Text   Cite this paper   Add to My Lib

Abstract:

在较大的空间尺度上,物种分布模型是预测物种潜在分布的有效途径之一。利用最大熵模型MAXENT,预测了蒙古沙冬青和新疆沙冬青在亚洲中部荒漠区的潜在分布;借助模型启发式搜索和多元线性回归分析揭示了控制其潜在分布的驱动因子。结果表明:①蒙古沙冬青的潜在适生区和实际分布范围基本一致,局限在阿拉善荒漠区的东部和南部、鄂尔多斯西部;最适生的分布区局限在内蒙古乌兰布和沙漠东缘和贺兰山北部的小部分区域。控制蒙古沙冬青潜在分布的关键因子主要是反映极端的温度和降水条件的因子,如最干月降水量、极端最低温和最冷季平均温度等。②新疆沙冬青最适生的潜在分布区局限在新疆乌恰县和沿昆仑山向南延伸的区域。反映极端气候和气候变化范围的因子,如温度季节性、最冷季平均温度、最湿月降水量和降水季节性等以及海拔,基本控制了新疆沙冬青的潜在分布。

References

[1]  Pearson R G,Dawson T P,Liu C.Modeling species distributions in Britain:A hierarchical integration of climate and land cover data[J].Ecography,2004,27:285-298.
[2]  Pearson R G,Raxworthy C J,Nakamura M,et al.Predicting species distributions from small numbers of occurrence records:A test case using cryptic geckos in Madagascar[J].Journal of Biogeography,2007,34:102-117.
[3]  中国科学院内蒙古宁夏综合考察队,内蒙古植被[M].北京:科学出版社,1985.
[4]  张永智,潘伯荣,尹林克,等.新疆沙冬青群落的区系组成与结构特征[J].干旱区研究,2006,26 (2):320-326.
[5]  刘媖心.我国荒漠区系形成的探讨[J].植物分类学报,1982,20(2):131-140.
[6]  吴征镒,王荷生.中国自然地理\5植物地理(上)[M].北京:科学出版社,1983.
[7]  Harrison T M,Yin A,Ryerson F J.Orographic evolution of the Himalaya and Tibetan plateau[M]//Crowley T J,Burke K C.Tectonic Boundary Conditions for Climate Reconstruction.Oxford,UK:Oxford University Press,1998:39-73.
[8]  刘媖心.讨论我国沙漠地区植物区系的发生与形成[J].植物分类学报,1995,33(2):131-143.
[9]  Guo Z T,Ruddiman W F,Hao Q Z,et al.Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J].Nature,2002,416:159-163.
[10]  张文驹,陈家宽.物种分布区研究进展[J].生物多样性,2003,11(5):364-369.
[11]  潘晓玲,党荣理,伍光和.西北干旱荒漠区植物区系地理与资源利用[M].北京:科学出版社,2001.
[12]  赵哈林,赵学勇,张铜会,等.我国西北干旱区的荒漠化过程及其空间分异规律[J].中国沙漠,2011,31(1):1-8. 浏览
[13]  Stockwell D,Peters D.The GARP modelling system:Problems and solutions to automated spatial prediction[J].International Journal of Geographical Information Science,1999,13:143-158.
[14]  Ara jo M B,Guisan A.Five (or) so challenges for species distribution modeling[J].Journal of Biogeography,2006,33:1677-1688.
[15]  Noss R F.Indicators for monitoring biodiversity:A hierarchical approach[J].Conservation Biology,1990,4:355-364.
[16]  Kozak K H,Graham C H,Wiens J J.Integrating GIS-based environmental data into evolutionary biology[J].Trends in Ecology & Evolution,2008,23(3):141-148.
[17]  Ortega-Huerta M A,Peterson A T.Modeling spatial patterns of biodiversity for conservation prioritization in North-eastern Mexico[J].Diversity and Distributions,2004,10:39-54.
[18]  王娟,倪健.中国北方温带地区5种锦鸡儿植物的分布模拟[J].植物生态学报,2009,33(1):12-24.
[19]  马松梅,张明理,张宏祥,等.利用最大熵模型和规则集遗传算法模型预测孑遗植物裸果木的潜在地理分布及格局[J].植物生态学报,2010,34(11):1327-1335.
[20]  吴建国,吕佳佳,周巧富.气候变化对6种荒漠植物分布的潜在影响[J].植物学报,2010,45(6):723-738.
[21]  Pearson R G,Dawson T P.Predicting the impacts of climate change on the distribution of species:Are bioclimate envelope models useful?[J].Global Ecology and Biogeography,2003,12(5):361-371.
[22]  傅立国.中国植物[M].北京:科学出版社,1992.
[23]  李新蓉,谭敦炎.新疆沙冬青(Ammopiptanthus nanus)的开花物候与环境的关系[J].中国沙漠,2007,27(4):572-578. 浏览
[24]  鲁春芳,尹林克.新疆沙冬青叶片蛋白质的双向电泳技术研究[J].中国沙漠,2011,31(1):96-100. 浏览
[25]  李毅,徐世健,冯虎元,等.蒙古沙冬青和霸王种子超干保存效果的研究[J].中国沙漠,2007,27(4):579-583. 浏览
[26]  何明珠.阿拉善高原荒漠植被组成分布特征及其环境解释 Ⅳ.土壤种子库特征研究[J].中国沙漠,2010,30(2):287-295.
[27]  毕江涛,贺达汉,谢瑞梅,等.沙冬青根瘤菌结瘤基因nodA PCR2RFLP分析[J].中国沙漠,2009,29(4):703-710. 浏览
[28]  赵一之,朱宗元.亚洲中部荒漠区的植物特有属[J].云南植物研究,2003,25(2):113-121.
[29]  Ge X J,Yu Y,Yuan Y M,et al.Genetic diversity and geographic differentiation in endangered Ammopiptanthus (Leguminosae) populations in desert regions of northwest China as revealed by ISSR analysis[J].Annals of Botany,2005,95(5):843-851.
[30]  Chen G Q,Crawford D,Huang H W,et al.Genetic structure and mating system of Ammopiptanthus mongolicus (Leguminosae),an endangered shrub in north-western China[J].Plant Species Biology,2009,24(3):179-188.
[31]  Chen G Q,Huang H W,Crawford D J,et al.Mating system and genetic diversity of a rare desert legume Ammopiptanthus nanus (Leguminosae)[J].Journal of Systematics and Evolution,2009,47(1):57-66.
[32]  Hijmans R J,Cameron S E,Parra J L,et al.Very high resolution interpolated climate surfaces for global land areas[J].International Journal of Climatology,2005,25:1965-1978.
[33]  Guisan A,Thuiller W.Predicting species distribution:Offering more than simple habitat models[J].Ecology Letters,2005,8:993-1009.
[34]  Elith J,Graham C H,Anderson R P,et al.Novel methods improve prediction of species' distributions from occurrence data[J].Ecography,2006,29:129-151.
[35]  Hernandez P A,Graham C H,Master L L,et al.The effect of sample size and species characteristics on performance of different species distribution modeling methods[J].Ecography,2006,29:773-785.
[36]  Phillips S J,Anderson R P,Schapire R E.Maximum entropy modeling of species geographic distributions[J].Ecological Modelling,2006,190:231-259.
[37]  Phillips S J.A maximum entropy approach to species distribution modeling[C]//Proceedings of the 21st International Conference on Machine Learning.New York:ACM Press,2004:655-662.
[38]  Fielding A H,Bell J F.A review of methods for the assessment of prediction errors in conservation presence/absence models[J].Environmental Conservation,1997,24:38-49.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133