全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
中国沙漠  2012 

柠条适应极端干旱的生理生态机制——叶片脱落和枝条中叶绿体保持完整性

Keywords: 柠条,极端干旱,叶片脱落,叶绿体超微结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了探讨柠条适应极端干旱的生理生态机制,对盆栽柠条停止浇水造成土壤持续干旱直到叶片完全脱落,然后复水。干旱和复水期间,对土壤、叶片和枝条的相对含水量、叶片和枝条中的叶绿素含量以及超微结构进行了测定和观察。结果表明,干旱脱水过程中叶片中的色素含量下降,枝条中类胡萝卜素含量下降。复水4d后,叶片中色素含量和枝条中类胡萝卜素含量上升并逐步达到正常水平。超微结构研究表明,柠条嫩枝的亚细胞组织中普遍含有叶绿体。正常条件下,无论是枝条还是叶片的亚细胞组织,叶绿体紧贴细胞壁。叶绿体中的类囊体排列整体有序。随着干旱的加剧,叶绿体脱离细胞壁,向细胞中央靠近。严重干旱造成了叶片叶肉细胞和叶绿体结构不可恢复性的破坏,包括外膜和膜片层结构,类囊体膜解体,淀粉粒消失,部分细胞器裂解成碎片。而嫩枝的亚细胞组织和叶绿体都保持完整。因此,柠条通过叶片脱落减少光照面积来适应极端干旱对自身造成的伤害,通过保持枝条中叶绿体的完整性和一部分叶绿素为复水条件下光合作用的快速恢复提供了保证。

References

[1]  郭卫华,李波,黄永梅,等.不同程度的水分胁迫对沙棘幼苗生理生态特征的影响[J].植物学报,2003,45(10):1238-1244.
[2]  Griffiths H,Parry M A J.Plant responses to water stress[J].Annals of Botany,2002,89:801-802.
[3]  Chaitanya K V,Jutur P P,Sundar D,et al.Water stress effects on photosynthesis in different mulberry cultivars[J].Plant Growth Regulation,2003,40:75-80.
[4]  Boyer T S,Wong S C,Farquhar D.CO2 and water vapor exchange across leaf cuticle (epidermis) at various water potentials[J].Plant Physiology,1997,114:185-191.
[5]  Lawlor D W.Limitation to photosynthesis in water-stressed leaves:Stomata vs.metabolism and the role of ATP[J].Annals of Botany,2002,89:871-885.
[6]  Oliver M J.Desiccation tolerance in vegetative plant cells[J].Physiologia Plantarum,1996,97:779-787.
[7]  Cooper K,Farrant J M.Recovery of the resurrection plant Craterostigma wilmsii from desiccation:Protection versus repair[J].Journal of Experimental Botany,2002,53:1805-1813.
[8]  Qian Y L,Fry J D,Upham W S.Rooting and drought avoidance of warm-season turfgrasses and tall fescue in Kansas[J].Crop Science,1997,37:699-704.
[9]  Maroco J P,Pereira J S,Chaves M M.Stomatal responses to leaf-to-air vapour pressure deficit in Sahelian species[J].Australian Journal of Plant Physiology,1997,24:381-387.
[10]  Volaire F,Thomas H,Lelievre F.Survival and recovery of perennial forage grasses under prolonged Mediterranean drought.I.Growth,death,water relations and solute content in herbage and stubble[J].New Phytologist,1998,140:439-449.
[11]  Balaguer L,Pugnaire F I,Mart nez-Ferri E,et al.Ecophysiological significance of chlorophyll loss and reduced photochemical efficiency under extreme aridity in Stipa tenacissima L[J].Plant & Soil,2002,240:343-352.
[12]  Niyogi K K.Photoprotection revisited:Genetic and molecular approaches[J].Annual Review of Plant Physiology and Plant Molecular Biology,1999,50:333-359.
[13]  Donald R.When there is too much light[J].Plant Physiology,2001,125:29-32.
[14]  赵长明,王根轩.干旱胁迫对沙冬青叶片防御光破坏机制的影响[J].植物学报,2002,44(11):1309-1313.
[15]  王志会,夏新莉,尹伟伦.不同种源的柠条锦鸡儿的生理特性与抗旱性[J].东北林业大学学报,2007,35(9):27-29.
[16]  牛西午.柠条生物学特性研究[J].华北农学报,1998,13(4):122-129.
[17]  张志山,李新荣,王新平,等.沙漠人工植被区蒸腾测定[J].中国沙漠,2005,25(3):374-379.
[18]  张金林,陈托兄,王锁民.阿拉善荒漠区几种抗旱植物游离氨基酸和游离脯氨酸的分布特征[J].中国沙漠,2004,24(4):193-199.
[19]  那日,杨生,杨休强,等.模拟沙地干旱环境研究电场对两种沙生植物抗旱性的影响[J].中国沙漠,2005,25(1):113-117.
[20]  李彦瑾,赵忠,孙德祥,等.干旱胁迫下柠条锦鸡儿的水分生理特征[J].西北林学院学报,2008,23(3):1-4.
[21]  刘永俊,冯虎元.不同演替阶段人工柠条林丛枝菌根真菌分子多样性研究[J].中国沙漠,2009,29(6):1141-1147. 浏览
[22]  Cooper K,Farrant J M.Recovery of the resurrection plant Craterostigma wilmsii from desiccation:Protection versus repair[J].Journal of Experimental Botany,2002,53:1805-1813.
[23]  Sims D A,Gamon J A.Relationships between leaf pigment content and spectral reflectance across a wide range of species,leaf structures and developmental stages[J].Remote Sensing of Environment,2002,81:337-354.
[24]  Casper B B,Forseth I N,Kempenich H.Drought prolongs leaf life span in the herbaceous desert perennial Cryptantha flava[J].Functional Ecology,2001,15:740-747.
[25]  Blum A.Crop responses to drought and the interpretation of adaptation[J].Plant Growth Regulation,1996,20:135-148.
[26]  Nilsen E T,Muller W H.Phenology of the drought-deciduous shrub Lotus scoparius:Climatic controls and adaptive significance[J].Ecological Monographs,1981,51:323-341.
[27]  潘晓玲,党荣理,伍光和.西北干旱荒漠植物区系地理与资源利用[M].北京:科学出版社,2001:50-54.
[28]  王继和,吴春荣,张盹明,等.甘肃荒漠区濒危植物绵刺生理生态学特性的研究[J].中国沙漠,2000,20(4):397-403.
[29]  Lawlor D W.Photosynthesis.Molecular,Physiological and Environmental Processes [M].Essex,UK:Longman Scientific and Technical,1993.
[30]  Heterington S E,Hallam N D,Smillie R M.Ultrastructural and compositional changes in chloroplast thylakoids of leaves of Borya nitida during humidity-sensitive degreening[J].Australia Journal of Plant Physiology,1982,9:601-609.
[31]  Markovska Y,Tsonev T,Kimenov G,et al.Physiological changes in higher poikilohydric plants-Haberlea rhodopensis Friv.and Ramonda serbica Panc.during drought and rewatering at different light regimes[J].Journal of Plant Physiology,1994,144:100-108.
[32]  Hallam N D,Luff S E.Fine structural changes in the leaves of the desiccation-tolerant plant Talbotia elegans during extreme water stress[J].Botanical Gazette,1980,141:180-187.
[33]  Francesca D V,Toufik E,Roberto C,et al.Morphological and ultrastructural aspects of dehydration and rehydration in leaves of Sporobolus stapfianus[J].Plant Growth Regulation,1998,24:219-228.
[34]  Schonbeck M W,Bewley J D.Responses of the moss Tortula ruralis to the desiccation treatments.I.Effects of minimum water content and rates of dehydration and rehydration[J].Canada Journal of Botany,1981,59:2698-2706.
[35]  Bianchi G,Gamba A,Murelli C,et al.Low molecular weight solutes in desiccated and ABA treated calli and leaves of Craterostigma plantagineum[J].Phytochemistry,1992,31:1917-1922.
[36]  Drennan P M,Smith M T,Goldsworthy D,et al.The occurrence of trehalose in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius Welw[J].Journal of Plant Physiology,1993,142:493-496.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133