全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
中国沙漠  2014 

干旱区尾矿污染环境的植物修复技术研究进展

DOI: 10.7522/j.issn.1000-694X.2013.00438

Keywords: 干旱区,植物提取,植物固定,重金属耐性植物

Full-Text   Cite this paper   Add to My Lib

Abstract:

干旱区矿业废弃地(尤其是尾矿及其污染环境)的治理面临着水资源短缺、土壤贫瘠、盐碱化、植物资源相对匮乏等不利因素的制约,很大程度上阻碍了该区域的生态恢复进程。基于目前国内外在干旱区尾矿污染环境治理方面所开展的研究,本文从植物修复的理论及技术方面进行了初步的综述,重点对比分析了植物提取技术和植物固定技术的优势和不足,并对相关典型应用实例进行了分析评价,最后对国内干旱区尾矿污染环境的治理研究和技术给出建议。

References

[1]  Snow A A,Andow D A,Gepts P,et al.Genetically engineered organisms and the environment:current status and recommendations[J].Ecological Applications,2005,10:377-404.
[2]  Conesa H M,Faz A,Arnaldos R.Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Union Mining District (SE Spain)[J].Science of the Total Environment,2006,366:1-11.
[3]  Del Rio-Celestino M,Font R,Moreno-Rojas R,et al.Uptake of lead and zinc by wild plants growing on contaminated soils[J].Industrial Crops and Products,2006,24:230-237.
[4]  Conesa H M,Robinson B H,Schullin R,et al.Growth of Lygeum spartum in acid mine tailings:response of plants developed from seedlings,rhizomes,and at field conditions[J].Environmental pollution,2007,145:700-707.
[5]  Fre rot H,Lefe`bvre C,Gruber W,et al.Specific interactions between local metallicolous plants improve the phytostabilization of mine soils[J].Plant and Soil,2006,282:53-65.
[6]  Marschner H.Mineral Nutrition of Higher Plants[M].San Diego,USA:Academic Press Inc.,1995.
[7]  Osmond C B,Bjorkman O,Anderson D J.Physiological Processes in Plant Ecology:Toward a Synthesis with Atriplex[M].New York,USA:Springer-Verlag,1980.
[8]  Lutts S,Lefevre I,Delperee C,et al.Heavy metal accumulation by the halophyte species Mediterranean saltbush[J].Journal of Environmental Quality,2004,33:1271-1279.
[9]  Ernst W H O.Phytoextraction of mine wastes-options and impossibilities[J].Chemie der Erde-Geochemistry,2005,65(S1):29-42.
[10]  Keller C,Hammer D,Kayser A,et al.Root development and heavy metal phytoextraction efficiency:comparison of different plant species in the field[J].Plant and Soil,2003,249:67-81.
[11]  Audet P,Charest C.Heavy metal phytoremediation from a meta-analytical perspective[J].Environmental Pollution,2007,147:231-237.
[12]  Wong M H.Ecological restoration of mine degraded soils,with emphasis on metal contaminated soils[J].Chemosphere,2003,50:775-780.
[13]  Glick B R.Phytoremediation:synergistic use of plants and bacteria to clean up the environment[J].Biotechnology Advances,2003,21:383-393.
[14]  Conesa H M,Garcia G,Faz A,et al.Dynamics of metal tolerant plant communities development in mine tailings from the Cartagena-La Union Mining District (SE Spain) and their interest for further revegetation purposes[J].Chemosphere,2007,68:1180-1185.
[15]  Johansson L,Xydas C,Messios N,et al.Growth and Cu accumulation by plants grown on Cu containing mine tailings in Cyprus[J].Applied Geochemistry,2005,20:101-107.
[16]  Gonzalez R C,Gonzalez-Chavez M C A.Metal accumulation in wild plants surrounding mining wastes:soil and sediment remediation (SSR)[J].Environmental Pollution,2006,144:84-92.
[17]  Flores-Tavizon E,Alarcon-Herrera M T,Gonzalez-Elizondo S,et al.Arsenic tolerating plants from mine sites and hot springs in the semi-arid region of Chihuahua,Mexico[J].Acta Biotechnology,2003,23:113-119.
[18]  赵磊.白音诺尔铅锌矿铅超富集植物筛选及其耐性研究[D].呼和浩特:内蒙古农业大学,2009.
[19]  冯宜民,何明珠,徐向宏,等.金川尾矿库土壤与植物重金属富集特征[J].水土保持学报,2011,25(5):177-181.
[20]  Bech J,Poschenrieder C,Barcelo J,et al.Plants from mine spoils in the South American area as potential sources of germplasm for phyotremediation technologies[J].Acta Biotechnology,2002,1 2:5 11.
[21]  Jefferson LV.Implications of plant density on the resulting community structure of mine site land[J].Restoration Ecology,2004,12:429-438.
[22]  Sabey B R,Pendleton R L,Webb B L.Effect of municipal sewage-sludge application on growth of two reclamation shrub species in copper mine spoils[J].Journal of Environmental Quality,1990,19:580-586.
[23]  Mains D,Craw D,Rufaut C G,et al.Phytostabilization of gold mine tailings from New Zealand.Part 2:experimental evaluation of arsenic mobilization during revegetation[J].International Journal of Phytoremediation,2006,8:163-183.
[24]  Lottermoser B G,Ashley P M,Costelloe M T.Contaminant dispersion at the rehabilitated Mary Kathleen uranium mine,Australia[J].Environmental Geology,2005,48:748-761.
[25]  Warhurst A.Mining, mineral processing,and extractive metallurgy:an overview of the technologies and their impact on the physical environment[M]//Warhurst A,Noronha L.Environmental Policy in Mining:Corporate Strategy and Planning for Closure.London,UK:CRC Press LLC,2000.
[26]  Munshower F F.Practical Handbook of Disturbed Land Revegetation[M].London,UK:Lewis Publishing,1994.
[27]  Li M S.Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China:a review of research and practice[J].Science of the Total Environment,2006,357:38-53.
[28]  宗和.一万余座,中国尾矿库安全吗?[J].地质勘察导报,2008,5:1-2
[29]  Ye Z H,Shu W S,Zhang Z Q,et al.Evaluation of major constraints to revegetation of lead/zinc mine tailings using bioassay techniques[J].Chemosphere,2002,47:1103-1111.
[30]  Bradshaw A D,Humphreys M O,Johnson M S.The Value of Heavy Metal tolerance in the revegetation of metalliferous mine wastes[M]//Goodman G T,Chadwick M J.Environmental Management of Mineral Wastes.Netherlands:Sijthoff & Noordhoff,1978:311-314.
[31]  廖晓勇,陈同斌,武斌,等.典型矿业城市的土壤重金属分布特征与复合污染评价——以“镍都”金昌市为例[J].地理研究,2006,25(5):843-852.
[32]  Stevenson F J,Cole M A.Cycles of Soil:Carbon,Nitrogen,Phosphorus,Sulfur,Micronutrients[M]//New York,USA:John Wiley & Sons,Inc.,1999.
[33]  Moynahan O S,Zabinski C A,Gannon J E.Microbial community structure and carbon-utilization diversity in a mine tailings revegetation study[J].Restoration Ecology,2002,10:77-87.
[34]  Mendez M O,Glenn E P,Maier R M.Phytostabilization potential of quailbush for mine tailings:growth,metal accumulation,and microbial community changes[J].Journal of Environmental Quality,2007,36:245-253.
[35]  杨根生.尾矿砂沙害形成机理与工程治理措施的选择[J].中国沙漠,1997,17(4):435-441.
[36]  Castro-Larragoitia J,Kramar U,Puchelt H.200 years of mining activities at La Paz,San Luis Potosi,Mexico-consequences for environment and geochemical exploration[J].Journal of Geochemical Exploration,1997,58:81 91.
[37]  USEPA (US Environmental Protection Agency).Test Methods for Evaluating Solid Waste[R].EPA SW-846.US Government Print Office,Washington:2004.
[38]  Neal C,Whitehead P G,Jeffery H,et al.The water quality of the River Carnon,west Cornwall,November 1992 to March 1994:the impacts of Wheal Jane discharges:bioremediation of acid Mine drainage:the Wheal Jane Mine Wetlands Project[J].Science of the Total Environment,2005,338:23-39.
[39]  Madejon E,de Mora A P,Felipe E,et al.Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation[J].Environmental pollution,2006,139:40 52.
[40]  Berti W W R,Cunningham S D.Phytostabilization of metals[M]//Raskin I,Ensley B D.Phytoremediation of Toxic Metals-Using Plants to Clean up the Environment.New York,USA:John Wiley & Sons,Inc.,2000:71-88.
[41]  Wolfe A K,Bjornstad D J.Why would anyone object? an exploration of social aspects of phytoremediation acceptability[J].Critical Reviews in Plant Sciences,2002,21:429-438.
[42]  Cunningham S D,Berti W R,Huang J W W.Phytoremediation of contaminated soils[J].Trends in Biotechnology,1995,13:393-397.
[43]  Tordoff G M,Baker A J M,Willis A J.Current approaches to the revegetation and reclamation of metalliferous mine wastes[J].Chemosphere,2000,41:219-228.
[44]  Whiting S N,Reeves R D,Richards D,et al.Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation[J].Restoration Ecology,2004,12:106-116.
[45]  Pilon-Smits E A H,Freeman J L.Environmental cleanup using plants:biotechnological advances and ecological considerations[J].Frontiers in Ecology and the Environment,2006,4:203-210.
[46]  Rosario K,Iverson S L,Henderson D A,et al.Bacterial community changes during plant establishment at the San Pedro River mine tailings site[J].Journal of Environmental Quality,2007,36:1249-1259.
[47]  Piha M I,Vallack H W,Michael N,et al.A low input approach to vegetation establishment on mine and coal ash wastes in semiarid regions.2.Lagooned pulverized fuel ash in Zimbabwe[J].Journal of Applied Ecology,1995,32:382-390.
[48]  Jordan F L,Robin-Abbott M,Maier R M,et al.A comparison of chelator-facilitated metal uptake by a halophyte and a glycophyte[J].Environmental toxicology and chemistry,2002,21:2698-2704.
[49]  Smith R A H,Bradshaw A D.Stabilization of toxic mine wastes by the use of tolerant plant populations[J].Transaction of the Institution of Mining and Metallurgy(Section A),1972,81:230-237.
[50]  Brooks R R.Plants that Hyperaccumulate Heavy Metals:Their Role in Phytoremediation,Microbiology,Archaeology,Mineral Exploration and Phytomining[M].Wallingford:CAB International,1998.
[51]  Baker A J M,McGrath S P,Reeves R D,et al.Metal Hyperaccumulator Plants:A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils[M]//Terry N,Ban uelos G.Phytoremediation of Contaminated Soil and Water.Boca Raton,USA:Lewis Publishers,2000.
[52]  Turnau K,Henriques F S,Anielska T,et al.Metal uptake and detoxification mechanisms in Erica andevalensis growing in a pyrite mine tailing[J].Environmental and Experimental Botany,2007,61:117-123.
[53]  Deng J C,Liao B,Ye M,et al.The effects of heavy metal pollution on genetic diversity in zinc/cadmium hyperaccumulator Sedum alfredii populations[J].Plant and Soil,2007,297:83-92.
[54]  Zhao F J,Lombi E,McGrath S P.Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens[J].Plant and Soil,2003,249:37-43.
[55]  Knight B,Zhao F J,McGrath S P,et al.Zinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soil solution[J].Plant and Soil,1997,197:71-78.
[56]  Meerts P,Van Isacker N.Heavy metal tolerance and accumulation in metallicolous and non-metallicolous populations of Thlaspi caerulescens from continental Europe[J].Plant Ecology.1997,133:221-231.
[57]  Salt D E,Pickering I J,Prince R C,et al.Metal accumulation by aquacultured seedlings of Indian mustard.Environment Science & Technology,1997,31:1636-1644.
[58]  Bennett L E,Burkhead J L,Hale K L,et al.Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated minetailings[J].Journal of Environmental Quality,2003,32:432-440
[59]  孔令韶,孙世洲,罗金铃,等.青海锡铁山矿区铅、锌的植物地理化学特征及其与矿的关系[J].植物生态学与地植物学学报,1988,1(1):40-50.
[60]  宋慈安,雷良奇,杨启军,等.甘肃公婆泉铜矿区植物地球化学特征[J].地球化学,2000,29(4):343-350.
[61]  廖晓勇,陈同斌,闫秀兰,等.金昌镍铜矿区植物的重金属含量特征与先锋植物筛选[J].自然资源学报,2007,22(3):486-495.
[62]  Krzaklewski W,Pietrzykowski M.Selected physicochemical properties of zinc and lead ore tailings and their biological stabilization[J].Water,Air & Soil Pollution,2002,141:125-142.
[63]  Wu J,Hsu F C,Cunningham S D.Chelate-assisted Pb phytoextraction:Pb availability,uptake,and translocation constraints[J].Environment Science and Technology,1999,33:1898-1904.
[64]  Schmidt U.Enhancing phytoextraction:the effect of chemical soil manipulation on mobility,plant accumulation,and leaching of heavy metals[J].Journal of Environmental Quality,2003,32:1939-1954.
[65]  Wolfenbarger L L,Phifer P R.The ecological risks and benefits of genetically engineered plants[J].Science,2000,290:2088-2093.
[66]  Pilon-Smits E,Pilon M.Phytoremediation of metals using transgenic plants[J].Critical Reviews in Plant Sciences,2002,21:439.
[67]  Windsor D M,Clements A.A germination and establishment field trial of Themeda australis (kangaroo grass) for mine site restoration in the Central Tablelands of New South Wales[J].Restoration Ecology,2001,9:104-110.
[68]  Mummey D L,Stahl P D,Buyer J S.Soil microbiological properties 20 years after surface mine reclamation:spatial analysis of reclaimed and undisturbed sites[J].Soil Biology and Biochemistry,2002,34:1717-1725.
[69]  Tilman D.Plant Strategies and the Dynamics and Structure of Plant Communities[M].New Jersey,USA:Princeton University Press,1988.
[70]  Gebauer R L E,Ehleringer J R.Water and nitrogen uptake patterns following moisture pulses in a cold desert community[J].Ecology,2000,81:695-712.
[71]  Watson I W,Westoby M,Holm A M.Continuous and episodic components of demographic change in arid zone shrubs:models of two Eremophila species from Western Australia compared with published data on other species[J].Journal of Ecology,1997,85:833-846.
[72]  Castellanos A E,Martinez M J,Llano J M,et al.Successional trends in Sonoran Desert abandoned agricultural fields in northern Mexico[J].Journal of Arid Environments,2005,60:437-455.
[73]  Pierzynski G M,Lambert M,Hetricck B A D,et al.Phytostabilization of metal mine tailings using tall fescue[J].Journal of Hazardous,Toxic,and Radioactive Waste,2002,6:212-217.
[74]  Pond A P,White S A,Milczarek M,et al.Accelerated weathering of biosolid-amended copper mine tailings[J].Journal of Environmental Quality,2005,34:1293-1301.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133