全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
中国沙漠  2014 

干旱沙区典型人工植被群落下土壤剖面CO2浓度变化特征及其驱动因子

DOI: 10.7522/j.issn.1000-694X.2013.00290

Keywords: 干旱沙区,人工植被群落,土壤CO2浓度,驱动因子

Full-Text   Cite this paper   Add to My Lib

Abstract:

对人工固沙植被区柠条(Caraganakorshinskii)群落和油蒿(Caraganakorshinskii)群落下不同深度的土壤气体采样,主要研究和讨论了不同类型人工植被区下土壤CO2浓度的变化特征及土壤温度和土壤水分对其的影响。结果表明:柠条和油蒿群落0~80cm处的土壤空气CO2浓度随着土壤深度的增加而增加,并且在0~40cm,油蒿群落下的土壤CO2浓度值大于柠条,而在40cm以下则相反。其平均值分别为1229.3μmol·mol-1和1242.7μmol·mol-1,大于同一深度流沙下土壤CO2浓度值978.9μmol·mol-1。土壤水分与二者的土壤CO2浓度变化趋势在年际尺度上具有一致性,浅层40cm内油蒿群落下的土壤CO2浓度和土壤水分含量的相关性明显大于柠条和流沙。而在40cm以下,则表现为柠条>油蒿>流沙。土壤温度对土壤CO2浓度的影响程度一般为流沙>油蒿>柠条,特别是流沙,在表层达到了极显著的水平,之后随着土壤深度的增加而降低。而土壤温度对油蒿和柠条样地土壤CO2浓度的影响较为复杂,呈现出先增加后减小的趋势。在年际尺度上,土壤水分含量是不同植被群落下土壤剖面CO2浓度的关键限制因子,而在日尺度上,土壤温度则为主要限制因子。据粗略估计,在0~80cm内,柠条和油蒿根系呼吸所占的比例约为30.7%和33.3%。

References

[1]  Shukla M K,Lal R.Air permeability of soils[C]//Lal R.Encyclopedia of Soil Science.New York,USA:Marcel Dekker,2006.
[2]  Hansen J E,Lacis A A.Sun and dust versus greenhouse gases:an assessment of their relative roles in global climate change[J].Nature,1990,346(6286):713-719.
[3]  Li X R,Wang X P,Li T,et al.Microbiotic soil crust and its effect on vegetation and habitat on artificially stabilized desert dunes in Tengger desert,North China[J].Biology and Fertility of Soils,2002,35:147-154.
[4]  Trumbore S.Carbon respired by terrestrial ecosystems-recent progress and challenges[J].Global Change Biology,2006,12:141-153.
[5]  高艳红,张志山,刘立超,等.腾格里沙漠植被重建对土壤呼吸的影响[J].土壤学报,2009,46(4):626-633.
[6]  刘艳梅,李新荣,何明珠,等.生物土壤结皮对土壤微生物量碳的影响[J].中国沙漠,2012,32(3):669-673. 浏览
[7]  高艳红,张志山,刘立超,等.水热因子对沙漠地区土壤呼吸的影响[J].生态学报,2009,29(11):5996-6001.
[8]  靳虎甲,马全林,张有佳,等.石羊河下游白刺灌丛演替发育过程的土壤呼吸及其影响因素分析[J].中国沙漠,2012,32(1):140-147. 浏览
[9]  禹朴家,徐海量,王炜,等.沙丘不同部位土壤呼吸对人工降水的响应[J].中国沙漠,2012,32(2):437-441. 浏览
[10]  Bouma T J,Bryla D R.On the assessment of root and soil respiration for soils of different textures:interactions with soil moisture contents and soil CO2 concentrations[J].Plant and Soil,2000,227:215-221.
[11]  赵拥华,赵林,武天云,等.冬春季青藏高原北麓河多年冻土活动层中气体CO2浓度分布特征[J].冰川冻土,2006,28(2):183-190.
[12]  刁一伟,郑循华,王跃思,等.开放式空气CO2浓度增高条件下旱地土壤气体CO2浓度廓线测定[J].应用生态学报,2002,13(10):1249-1252.
[13]  戴万宏,王益权,黄耀,等.塿土剖面CO2浓度的动态变化及其受环境因素的影响[J].土壤学报,2004,41(5):170-175.
[14]  莫江明,方运霆,李德军,等.鼎湖山主要森林土壤CO2排放和CH4吸收特征[J].广西植物,2006,26(2):142-147.
[15]  张智才,刘峻杉,朱锴,等.内蒙古典型草原土壤不同剖面深度CO2通量格局及其驱动因子[J].生态环境,2008,17(5):2024-2030.
[16]  刘冰,赵文智,常学向,等.黑河流域荒漠区土壤水分对降水脉动响应[J].中国沙漠,2011,31(3):716-722. 浏览
[17]  黄磊,张志山,陈永乐.干旱人工固沙植被区土壤水分动态随机模拟[J].中国沙漠,2013,33(2):568-573. 浏览
[18]  Hanson P J,Edwards N T,Garten C T,et al.Separating root and soil microbial contributions to soil respiration:a review of methods and observations[J].Biogeochemistry,2000,48:115-146.
[19]  Irvine J,Law B E.Contrasting soil respiration in young and old-growth ponderosa pine forests[J].Global Change Biology,2002,8:1183-1194.
[20]  Raich J W,Tufekcioglu A.Vegetation and soil respiration:correlations and controls[J].Biogeochemistry,2000,48:71-90.
[21]  Bajracharya R M,Lai R,Kimble JM.Erosion effects on carbon dioxide concentration and carbon flux from an Ohio Alfisol[J].Soil Science Society American Journal,2000,64:694-700.
[22]  Kammann C,Grunhage L,Jager H J.A new sampling technique to monitor concentration of CO2,CH4 and N2O in air at well-defined depths in soils with varied water potential[J].European Journal of Soil Science,2001,52:297-303.
[23]  Grant R F,Rochette P.Soil microbial respiration at different water potentials and temperatures:theory and mathematical modeling[J].Soil Science Society of America Journal,1994,58:1681-1690.
[24]  Smith K A,Ball T,Conen F,et al.Exchange of greenhouse gases between soil and atmosphere:Interactions of soil physical factors and biological processes[J].European Journal of Soil Science,2003,54:779-791.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133