全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于网络用户情感分析的预测方法研究

Keywords: 社会化媒体,网络用户,情感分析,预测方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

网络用户情感分析领域的研究为特定领域社会行为的预测提供了新的方法和工具。本文分析了基于情感分析进行预测的逻辑基础、典型预测方法、关键技术以及当前存在的问题和发展趋势。研究发现:研究基于网络用户情感分析预测社会活动趋势的方法在政治、财经等多个领域具备应用条件;典型预测方法可归纳为以情感分析结果作为辅助依据的预测方法和以情感分析结果作为主要依据的预测方法;预测过程涉及情感分析源的选择、预测时间提前量的确定以及情感词统计处理三个关键环节;当前研究还存在网络用户情感的代表性,待分析语料的全面和正确获取,以及网络用户情感的正确分析和统计等问题,有待深入研究。图2。参考文献47。

References

[1]  Ye Q, Zhang Z, Law R.Sentiment classification of online reviews to travel destinations by supervised machine learning approaches[J].Expert Systems with Applications, 2009, 36(3):6527-6535.
[2]  陆文星, 王燕飞.中文文本情感分析研究综述[J].计算机应用研究, 2012, 29(6):2014-2017.(Lu Wenxing, Wang Yanfei.Review of Chinese text sentiment analysis[J].Application Research of Computers, 2012, 29(6):2014-2017.)
[3]  朱嫣岚, 闵锦, 周雅倩,等.基于HowNet的词汇语义倾向计算[J].中文信息学报, 2006, 20(1):14-20.(Zhu Yanlan, Min Jin, Zhou Yaqian, et al.Semantic orientation computing based on HowNet[J].Journal of Chinese Information Processing, 2006, 20(1):14-20.)
[4]  张清亮, 徐健.网络情感词自动识别方法研究[J].现代图书情报技术, 2011(10):24-28.(Zhang Qingliang, Xu Jian.Research on automatic extraction of Web sentiment words[J].New Technology of Library and Information Service, 2011(10):24-28.)
[5]  李纲, 程洋洋, 寇广增.句子情感分析及其关键问题[J].图书情报工作, 2010, 54(11):104-107.(Li Gang, Cheng Yangyang, Kou Guangzeng.Key problems of sentence level sentiment analysis[J].Library and Information Service, 2010, 54(11):104-107.)
[6]  杨经, 林世平.基于SVM的文本词句情感分析[J].计算机应用与软件, 2011, 28(9):225-228.(Yang Jing, Lin Shiping.Emotion analysis on text words and sentences based on SVM[J].Computer Applications and Software, 2011, 28(9):225-228.)
[7]  李本阳, 关毅, 董喜双,等.基于单层标注级联模型的篇章情感倾向分析[J].中文信息学报, 2012, 26(4):3-8.(Li Benyang, Guan Yi, Dong Xishuang, et al.Single-label cascaded model for document sentiment analysis[J].Journal of Chinese Information Processing, 2012, 26(4):3-8.)
[8]  夏云庆, 杨莹, 张鹏洲,等.基于情感向量空间模型的歌词情感分析[J].中文信息学报, 2010, 24(1):99-103.(Xia Yunqing, Yang Ying, Zhang Pengzhou, et al.Lyric-based song sentiment analysis by sentiment vector space model[J].Journal of Chinese Information Processing, 2010, 24(1):99-103.)
[9]  曹树金, 周小又, 陈桂鸿.网络舆情监控系统中的主题帖自动标引及情感倾向分析研究[J].图书情报知识, 2012(1):66-73.(Cao Shujin, Zhou Xiaoyou, Chen Guihong.A study on emotional tendency analysis of topic posts of online public opinion monitoring system[J].Document, Information & Knowledge, 2012(1):66-73.)
[10]  郑文英.旅行目的地中文评论的情感分析研究[D].哈尔滨:哈尔滨工业大学, 2010.(Zheng Wenying.Sentiment analysis of travel destination reviews in Chinese[D].Harbin:Harbin Institute of Technology, 2010.)
[11]  Dolan R.Emotion, cognition, and behavior[J].Science, 2002, 298(5596):1191-1194.
[12]  Damasio A.Descarte\'s error:Emotion, reason, and the human brain[M].New York:Gosset/Putnam, 1994.
[13]  Nofsinger J.Social mood and financial economics[J].The Journal of Behavioral Finance, 2005, 6(3):144-160.
[14]  Tumasjan A, Sprenger T, Sandner P, et al.Predicting elections with Twitter:What 140characters reveal about political sentiment[C]// Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media, 2010:178-185.
[15]  Hong S, Nadler D.Which candidates do the public discuss online in an election campaign? The use of social media by 2012presidential candidates and its impact on candidate salience[J].Government Information Quarterly, 2012, 29:455-461.
[16]  Gruhl D, Guha R, Kumar R.The predictive power of online chatter[C]// Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, 2005:78-87.
[17]  Asur S, Huberman B.Predicting the future with social media[EB/OL].[2012-10-22].http://arxiv.org/abs/1003.5699.
[18]  Liu Y, Huang X, An A, et al.ARSA:A sentiment-aware model for predicting sales performance using blogs[C]// Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2007:607-614.
[19]  Joseph K,Wintoki B, Zhang Z.Forecasting abnormal stock returns and trading volume using investor sentiment:Evidence from online search[J].International Journal of Forecasting, 2011, 27(4):1116-1127.
[20]  Zhang X,Fuehres H, Gloor P.Predicting stock market indicators through Twitter “I hope it is not as bad as I fear”[J].Procedia-Social and Behavioral Sciences, 2011, 26:55-62.
[21]  Wilson T, Hoffmann P,Somasundaran S.OpinionFinder:A system for subjectivity analysis[C]// Proceedings of HLT/EMNLP on Interactive Demonstrations, 2005:34-35.
[22]  Wiebe J, Riloff E.Creating subjective and objective sentence classiers from unannotated texts[C]// Proceedings of Sixth International Conference on Intelligent Text Processing and Computational Linguistics, 2005:486-497.
[23]  Pennebaker, James W, Chung C, et al.The development and psychometric properties of LIWC2007[EB/OL].[2012-10-22].http://homepage.psy.utexas.edu/homepage/faculty/pennebaker/Reprints/LIWC2007_LanguageManual.pdf.
[24]  Eric G,Karahalios K.Widespread worry and the stock market[C]// Proceedings of the International Conference AAAI on Weblogs and Social Media, 2010, 2(1):229-247.
[25]  Vasileios L, Cristianini N.Tracking the flu pandemic by monitoring the social web[C]// Proceedings of Cognitive Information Processing(CIP), 20102nd International Workshop on, 2010:411-416.
[26]  Gruhl D, Chavet L, Gibson D, et al.How to build a webfountain:An architecture for very large-scale text analytics[J].IBM Systems Journal, 2004, 43(1):64-77.
[27]  Abrahams A, Jiao J, Wang G, et al.Vehicle defect discovery from social media[EB/OL].[2012-10-22].http://www.sciencedirect.com/science/article/pii/S0167923612001017.
[28]  Dellarocas C, Zhang X, Awad N.Exploring the value of online product reviews in forecasting sales:The case of motion pictures[J].Journal of Interactive Marketing, 2007, 21(4):23-45.
[29]  Chatfield C.The analysis of time series[M].Chapman and Hall, 1984.
[30]  Walter E.Applied econometric time series[M].New York:Wiley, 2004.
[31]  Freeman, John R.Granger causality and the times series analysis of political relationships[J].American Journal of Political Science, 1983:327-358.
[32]  Hofmann T.Probabilistic latent semantic indexing[C]// Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 1999:50-57.
[33]  Norcross C,Guadagnoli E, Prochaska O.Factor structure of the prole of mood states(POMS):Two partial replications[J].Journal of Clinical Psychology, 2006, 40(5):1270-1277.
[34]  Bergsma S,Dekang L, Goebel R.Web-scale N-gram models for lexical disambiguation[C]// Proceedings of the Twenty-rst International Joint Conference on Articial Intelligence(IJCAI-09), 2009:1507-1512.
[35]  Loughran T, McDonald B.When is a liability not a liability? Textual analysis, dictionaries, and 10-Ks[J].Journal of Finance, 2011, 661(1):35-65.
[36]  Kelly E, Stone P.Computer recognition of English word senses[M].North-Holland Linguistic Series, 1975.
[37]  赵妍妍, 秦兵, 刘挺.文本情感分析[J].软件学报, 2010, 21(8):1834-1848.(Zhao Yanyan, Qin Bing, Liu Ting.Sentiment analysis[J].Journal of Software, 2010, 21(8):1834-1848.)
[38]  张紫琼, 叶强, 李一军.互联网商品评论情感分析研究综述[J].管理科学学报, 2010, 13(6):84-96.(Zhang Ziqiong, Ye Qiang, Li Yijun.Literature review on sentiment analysis of online product reviews[J].Journal of Management Sciences in China, 2010, 13(6):84-96.)
[39]  Abbasi A, Chen H, Salem A.Sentiment analysis in multiple languages:Feature selection for opinion classification in Web forums[J].ACM Transactions on Information Systems, 2008, 26(3):1-35.
[40]  Liu H, Lieberman H, Selker T.A model of textual affect sensing using real-world knowledge[C] // Proceedings of the 2003International Conference on Intelligent User Interfaces, 2003:125-132.
[41]  Hu M, Liu B.Mining opinion features in customer reviews[C]// Proceedings of 19th National Conference on Artificial Intellgience, 2004:755-760.
[42]  Pang B, Lee L.Opinion mining and sentiment analysis[J].Foundations and Trends in Information Retrieval, 2008, 2(1-2):1-135.
[43]  Wilson T,Wiebe J, Hoffmann P.Recognizing contextual polarity in phrase-level sentiment analysis[C] //Proceedings of Human Language Technologies Conference, 2005:34-35.
[44]  Bollen J, Mao H, Zeng X.Twitter mood predicts the stock market[J].Journal of Computational Science, 2011, 2(1):1-8.
[45]  Thelwall M, Buckley K, Paltoglou Georgios, et al.Sentiment strength detection in short informal text[J].Journal of the American Society for Information Science and Technology, 2010, 61(12):2544-2558.
[46]  Chaovalit P, Zhou L.Movie review mining:A comparison between supervised and unsupervised classification approaches[C]// Proceedings of the 38th Hawaii International Conference on System Sciences, 2005:1-9.
[47]  Xu K, Liao S, Li J, et al.Mining comparative opinions from customer reviews for competitive intelligence[J].Decision Support Systems, 2011, 50(4):743-754.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133