全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

位移时序预测的apso-wlssvm模型及应用研究

, PP. 313-318

Keywords: 小波函数,最小二乘支持向量机,粒子群算法,位移时间序列预测

Full-Text   Cite this paper   Add to My Lib

Abstract:

引入改进的粒子群算法对小波核函数最小二乘支持向量机进行优化,提出了位移时间序列预测的改进粒子群优化小波最小二乘支持向量机预测模型(apso-wlssvm)。该模型具有小波变换的良好时、频域分辨能力和支持向量机的非线性学习能力;同时利用粒子群算法优化小波最小二乘支持向量机的参数,避免了人为选择参数的盲目性,从而提高了模型的预测精度。为证明该模型的优越性,将该模型与传统的高斯核函数支持向量机模型的预测结果作了对比,结果表明该模型较传统方法预测精度有了明显提高。最后将该模型用于锦屏一级水电站左岸边坡和导流洞进行变形预测,预测结果表明该方法科学可靠,在岩土体位移时序预测中具有良好的实际应用价值。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133