Clinical studies suggest the comorbidity of functional pain syndromes such as irritable bowel syndrome, painful bladder syndrome, chronic pelvic pain, and somatoform disorders approaches 40% to 60%. The incidence of episodic or persistent visceral pain associated with these “functional” disorders is two to three times higher in women than in men. One of the possible explanations for this phenomenon is estrogen modulation of viscerovisceral cross-sensitization. While a central site of this modulation has been shown previously, our studies suggest a peripheral site, the dorsal root ganglion (DRG). Estrogens have remarkably wide range of functions including modulation of voltage-gated calcium channels (VGCCs) and purinoreceptors (P2Xs). Significantly, inflammation dramatically alters purinoception by causing a several fold increase in ATP-activated current, alters the voltage dependence of P2X receptors, and enhances the expression of P2X receptors increasing neuronal hypersensitivity. Gonadal hormones are thought as indispensable cornerstones of the normal development and function, but it appears that no body region, no neuronal circuit, and virtually no cell is unaffected by them. Thus, increasing awareness toward estrogens appears to be obligatory. 1. DRG Neurons and Visceral Sensitization Sex hormones and 17β-estradiol (E2), in particular, directly influence the functions of primary afferent neurons. However, E2 has a multiplicity of actions: membrane, cytoplasmic, and nuclear: E2 modulates cellular activity by altering ion channel opening, G-protein signaling, and activation of trophic factor-like signal transduction pathways [1]. DRG neurons in culture express receptors of nociceptive signals [2] and retain most, if not all, their intracellular signaling cascades. DRG neurons in vitro are a valuable preparation because adult primary sensory neurons can be studied without the interference of modulation by central or peripheral messengers. Visceral afferents are sensitive to ATP [3], and several indirect pieces of evidence suggest that visceral afferents are E2-sensitive: (i) visceral pain is affected by hormonal level in cycling females [4]; (ii) there are gender differences in the prevalence of functional disorders involving the viscera [5]; (iii) putative visceral afferents [6] fit into the population of DRG neurons that are E2-sensitive. Although it is generally accepted that each primary afferent neuron is a single sensory channel, several studies have challenged that view and demonstrate that a population of DRG neuron can innervate both the
References
[1]
E. R. Levin, “Cellular functions of plasma membrane estrogen receptors,” Steroids, vol. 67, no. 6, pp. 471–475, 2002.
[2]
M. S. Gold and G. F. Gebhart, “Nociceptor sensitization in pain pathogenesis,” Nature Medicine, vol. 16, no. 11, pp. 1248–1257, 2010.
[3]
G. Burnstock, “Purinergic receptors and pain,” Current Pharmaceutical Design, vol. 15, no. 15, pp. 1717–1735, 2009.
[4]
J. L. Riley, M. E. Robinson, E. A. Wise, C. D. Myers, and R. B. Fillingim, “Sex differences in the perception of noxious experimental stimuli: a meta-analysis,” Pain, vol. 74, no. 2-3, pp. 181–187, 1998.
[5]
Z. Li, Y. Niwa, S. Sakamoto, X. Chen, and Y. Nakaya, “Estrogen modulates a large conductance chloride channel in cultured porcine aortic endothelial cells,” Journal of Cardiovascular Pharmacology, vol. 35, no. 3, pp. 506–510, 2000.
[6]
J. A. McRoberts, S. V. Coutinho, J. C. G. Marvizón et al., “Role of peripheral N-methyl-D-aspartate (NMDA) receptors in visceral nociception in rats,” Gastroenterology, vol. 120, no. 7, pp. 1737–1748, 2001.
[7]
V. V. Chaban, “Peripheral sensitization of sensory neurons,” Ethnicity & Disease, vol. 20, no. 1, pp. S1–3, 2010.
[8]
M. A. Giamberardino, R. Costantini, G. Affaitati et al., “Viscero-visceral hyperalgesia: characterization in different clinical models,” Pain, vol. 151, no. 2, pp. 307–322, 2010.
[9]
A. P. Malykhina, C. Qin, B. Greenwood-Van Meerveld, R. D. Foreman, F. Lupu, and H. I. Akbarali, “Hyperexcitability of convergent colon and bladder dorsal root ganglion neurons after colonic inflammation: mechanism for pelvic organ cross-talk,” Neurogastroenterology and Motility, vol. 18, no. 10, pp. 936–948, 2006.
[10]
V. V. Chaban, “Visceral sensory neurons that innervate both uterus and colon express nociceptive TRPV1 and P2X3 receptors in rats,” Ethnicity & Disease, vol. 18, no. 2, pp. S2–S2, 2008.
[11]
J. Li, P. Micevych, J. McDonald, A. Rapkin, and V. Chaban, “Inflammation in the uterus induces phosphorylated extracellular signal-regulated kinase and substance P immunoreactivity in dorsal root ganglia neurons innervating both uterus and colon in rats,” Journal of Neuroscience Research, vol. 86, no. 12, pp. 2746–2752, 2008.
[12]
R. Melzack, “The tragedy of needless pain,” Scientific American, vol. 262, no. 2, pp. 27–33, 1990.
[13]
K. J. Berkley, “Sex differences in pain,” Behavioral and Brain Sciences, vol. 20, no. 3, pp. 371–380, 1997.
[14]
O. Y. Lee, E. A. Mayer, M. Schmulson, L. Chang, and B. Naliboff, “Gender-related differences in IBS symptoms,” American Journal of Gastroenterology, vol. 96, no. 7, pp. 2184–2193, 2001.
[15]
V. V. Chaban, E. A. Mayer, H. S. Ennes, and P. E. Micevych, “Estradiol inhibits ATP-induced intracellular calcium concentration increase in dorsal root ganglia neurons,” Neuroscience, vol. 118, no. 4, pp. 941–948, 2003.
[16]
A. I. Basbaum, “Change is coming!,” Pain, vol. 141, no. 1-2, p. 1, 2009.
[17]
I. M. ábrahám, M. G. Todman, K. S. Korach, and A. E. Herbison, “Critical in vivo roles for classical estrogen receptors in rapid estrogen actions on intracellular signaling in mouse brain,” Endocrinology, vol. 145, no. 7, pp. 3055–3061, 2004.
[18]
V. V. Chaban and P. E. Micevych, “Estrogen receptor-α mediates estradiol attenuation of ATP-induced Ca2+ signaling in mouse dorsal root ganglion neurons,” Journal of Neuroscience Research, vol. 81, no. 1, pp. 31–37, 2005.
[19]
A. Pedram, M. Razandi, M. Aitkenhead, C. C. W. Hughes, and E. R. Levin, “Integration of the non-genomic and genomic actions of estrogen: membrane-initiated signaling by steroid to transcription and cell biology,” Journal of Biological Chemistry, vol. 277, no. 52, pp. 50768–50775, 2002.
[20]
C. D. Toran-Allerand, X. Guan, N. J. MacLusky et al., “ER-X: a novel, plasma membrane-associated, putative estrogen receptor that is regulated during development and after ischemic brain injury,” Journal of Neuroscience, vol. 22, no. 19, pp. 8391–8401, 2002.
[21]
P. E. Micevych and P. G. Mermelstein, “Membrane estrogen receptors acting through metabotropic glutamate receptors: an emerging mechanism of estrogen action in brain,” Molecular Neurobiology, vol. 38, no. 1, pp. 66–77, 2008.
[22]
?. Amandusson, M. Hallbeck, A. L. Hallbeck, O. Hermanson, and A. Blomqvist, “Estrogen-induced alterations of spinal cord enkephalin gene expression,” Pain, vol. 83, no. 2, pp. 243–248, 1999.
[23]
S. J. Williams and R. E. Papka, “Estrogen receptor-immunoreactive neurons are present in the female rat lumbosacral spinal cord,” Journal of Neuroscience Research, vol. 46, no. 4, pp. 492–501, 1996.
[24]
N. Taleghany, S. Sarajari, L. L. DonCarlos, L. Gollapudi, and M. M. Oblinger, “Differential expression of estrogen receptor alpha and beta in rat dorsal root ganglion neurons,” Journal of Neuroscience Research, vol. 57, no. 5, pp. 603–615, 1999.
[25]
R. E. Papka and M. Storey-Workley, “Estrogen receptor-α and -β coexist in a subpopulation of sensory neurons of female rat dorsal root ganglia,” Neuroscience Letters, vol. 319, no. 2, pp. 71–74, 2002.
[26]
P. E. Micevych, C. B. Eckersell, N. Brecha, and K. L. Holland, “Estrogen modulation of opioid and cholecystokinin systems in the limbic- hypothalamic circuit,” Brain Research Bulletin, vol. 44, no. 4, pp. 335–343, 1997.
[27]
P. Micevych and K. Sinchak, “Estrogen and endogenous opioids regulate CCK in reproductive circuits,” Peptides, vol. 22, no. 8, pp. 1235–1244, 2001.
[28]
P. G. Mermelstein, J. B. Backer, and D. J. Surmeier, “Estradiol reduces calcium currents in rat neostriatal neurons via a membrane receptor,” Journal of Neuroscience, vol. 16, no. 2, pp. 595–604, 1996.
[29]
M. J. Kelly and E. J. Wagner, “Estrogen modulation of G-protein-coupled receptors,” Trends in Endocrinology and Metabolism, vol. 10, no. 9, pp. 369–374, 1999.
[30]
C. B. Eckersell, P. Popper, and P. E. Micevych, “Estrogen-induced alteration of μ-opioid receptor immunoreactivity in the medial preoptic nucleus and medial amygdala,” Journal of Neuroscience, vol. 18, no. 10, pp. 3967–3976, 1998.
[31]
E. R. Levin, “Cellular functions of the plasma membrane estrogen receptor,” Trends in Endocrinology and Metabolism, vol. 10, no. 9, pp. 374–376, 1999.
[32]
D. Y. Lee, Y. G. Chai, E. B. Lee et al., “17β-Estradiol inhibits high-voltage-activated calcium channel currents in rat sensory neurons via a non-genomic mechanism,” Life Sciences, vol. 70, no. 17, pp. 2047–2059, 2002.
[33]
P. M. Dunn, Y. Zhong, and G. Burnstock, “P2X receptors in peripheral neurons,” Progress in Neurobiology, vol. 65, no. 2, pp. 107–134, 2001.
[34]
C. J. Woolf and M. W. Salter, “Neuronal plasticity: increasing the gain in pain,” Science, vol. 288, no. 5472, pp. 1765–1768, 2000.
[35]
P. Bodin and G. Burnstock, “Purinergic signalling: ATP release,” Neurochemical Research, vol. 26, no. 8-9, pp. 959–969, 2001.
[36]
F. Cervero and J. M. A. Laird, “Understanding the signaling and transmission of visceral nociceptive events,” Journal of Neurobiology, vol. 61, no. 1, pp. 45–54, 2004.
[37]
M. J. Caterina, M. A. Schumacher, M. Tominaga, T. A. Rosen, J. D. Levine, and D. Julius, “The capsaicin receptor: a heat-activated ion channel in the pain pathway,” Nature, vol. 389, no. 6653, pp. 816–824, 1997.
[38]
J. M. Gschossmann, V. V. Chaban, J. A. McRoberts et al., “Mechanical activation of dorsal root ganglion cells in vitro: comparison with capsaicin and modulation by κ-opioids,” Brain Research, vol. 856, no. 1-2, pp. 101–110, 2000.
[39]
G. Burnstock, “Purines and sensory nerves,” Handbook of Experimental Pharmacology, vol. 194, pp. 333–392, 2009.
[40]
J. C. Petruska, J. Napaporn, R. D. Johnson, J. G. Gu, and B. Y. Cooper, “Subclassified acutely dissociated cells of rat DRG: histochemistry and patterns of capsaicin-, proton-, and ATP-activated currents,” Journal of Neurophysiology, vol. 84, no. 5, pp. 2365–2379, 2000.
[41]
I. Gaumond, P. Arsenault, and S. Marchand, “The role of sex hormones on formalin-induced nociceptive responses,” Brain Research, vol. 958, no. 1, pp. 139–145, 2002.
[42]
G. Burnstock, “Purine-mediated signalling in pain and visceral perception,” Trends in Pharmacological Sciences, vol. 22, no. 4, pp. 182–188, 2001.