全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

测量超紫外线阿秒脉冲时间结构的光电子能谱非线性比例变换方程方法

DOI: 10.1360/csb2012-57-2-3-120, PP. 120-128

Keywords: 阿秒测量,脉冲时间结构,光电子能谱,变换方程,相位确定法

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究化学反应、原子分子发光等超快速过程中电子态的时间演化过程,需要能量越来越高、脉冲时间宽度越来越短、单色性越来越好的光脉冲作为激发和探测手段.但是,如何快速、精确地测量这些光脉冲具体细致的时间结构,一直是科学界的一个挑战.在过去的十多年时间里,人们在测量超紫外线阿秒脉冲方面作出了巨大的努力,取得了显著的成果.迄今为止,已经发展出了几种测量阿秒脉冲时间宽度和重建脉冲形状的方法,如阿秒光谱相位干涉直接电场重建法(SPIDER)和阿秒频率分辨光学快门法(FROG).然而,这些方法都是从传统的光学测量方法演变而来的,不仅需要当代最先进的实验装置,而且需要十分复杂的分析计算方法和实验数据拟合过程.为了推动阿秒计量学的发展,进一步开展阿秒测量、脉冲时域定位(定时)、实验数据评估、探测器刻度,以及对阿秒脉冲光源进行改进、优化和应用,我们提出一种直接、快速、精确的基于光电子能谱变换方程的解析方法,利用激光辅助超紫外线气体电离技术,精确地观测超紫外线阿秒脉冲.新方法利用参数化的计算公式确定每个测量得到的光电子的相关激光相位,利用解析性的光电子能谱解谱技术,一步重建脉冲的形状和具体的时间结构.新方法不需要大量的光电子能谱的时间分辨测量,也不需要冗长的迭代计算和实验数据拟合过程,能从每个测量得到的光电子能谱重建出超紫外线脉冲的时域特性.用参数化公式从脉冲的能量带宽值计算得到脉冲重建结果的时间不确定性(即时间误差).由于变换方程建立了超紫外线脉冲时间特性、重要的激光参数(峰值强度、电场包络形状、相位、载波-包络相位等)、原子或分子的电离能,以及光电子能谱之间的直接联系,可以用它从各个已知参数值计算出未知的参量.通过观测、分析某些参数和特定谱项的变化规律,可以研究超快速反应动力学过程中随时间变化的相关信息.

References

[1]  1 Drescher M, Hentschel M, Kienberger R, et al. X-ray pulses approaching the attosecond frontier. Science, 2001, 291:1923-1927??
[2]  3 Drescher M, Hentschel M, Kienberger R, et al. Time-resolved atomic inner-shell spectroscopy. Nature, 2002, 419:803-807??
[3]  4 Kienberger R, Goulielmakies E, Uiberacker M, et al. Atomic transient recorder. Nature, 2004, 427:817-821??
[4]  5 Goulielmakis E, Uiberacker M, Kienberger R, et al. Direct measurement of light waves. Science, 2004, 305:1267-1269??
[5]  7 Spielmann Ch, Burnett N H. Generation of coherent X-rays in the water window using 5-femtosecond laser pulses. Science, 1997, 278:661-664??
[6]  9 Kienberger R, Goulielmakis E, Uiberacker M, et al. Single sub-fs soft-X-ray pulses:Generation and measurement with the atomic transient recorder. J Mod Opt, 2005, 52:261-275??
[7]  10 Mairesse Y, Bohan A D, Frasinski L J, et al. Optimization of attosecond pulse generation. Phys Rev Lett, 2004, 93:163901??
[8]  11 Gaarde M B, Schafer K J. Generating single attosecond pulses via spatial filtering. Opt Lett, 2006, 31:3188-3190??
[9]  13 Goulielmakis E, Schultze M, Hofstetter M, et al. Single-cycle nonlinear optics. Science, 2008, 320:1614-1617??
[10]  14 Tzallas P, Charalambidis D, Papadogiannis N A, et al. Direct observation of attosecond light bunching. Nature, 2003, 426:267-271??
[11]  15 Quéré F, Itatani J, Yudin G L, et al. Attosecond spectral shearing interferometry. Phys Rev Lett, 2003, 90:073902??
[12]  16 Kobayashi Y, Sekikawa T, Nabekawa Y, et al. 27-fs extreme ultraviolet pulse generation by high-order harmonics. Opt Lett, 1998, 23:64-66??
[13]  18 Norin J, Mauritsson J, Johansson A, et al. Time-frequency characterization of femtosecond extreme ultraviolet pulses. Phys Rev Lett,2002, 88:193901??
[14]  19 Mauritsson J, Johnsson P, López-Martens R, et al. Measurement and control of the frequency chirp rate of high-order harmonic pulses. Phys Rev A, 2004, 70:021801??
[15]  20 Mairesse Y, Quéré F. Frequency-resolved optical gating for complete reconstruction of attosecond bursts. Phys Rev A, 2005, 71:011401??
[16]  24 Bandrauk A D, Chelkowski S, Shon N H. How to measure the duration of subfemtosecond xuv laser pulses using asymmetric photoionization. Phys Rev A, 2003, 68:041802??
[17]  25 Constant E, Taranukhin V D, Stolow A, et al. Methods for the measurement of the duration of high-harmonic pulses. Phys Rev A, 1997,56:3870-3878??
[18]  27 Itatani J, Quéré F, Yudin G L, et al. Attosecond streak camera. Phys Rev Lett, 2002, 88:173903??
[19]  28 Kitzler M, Milosevic N, Scrinzi A, et al. Quantum theory of attosecond XUV pulse measurement by laser dressed photoionization. Phys Rev Lett, 2002, 88:173904??
[20]  31 Yakovlev V S, Bammer F, Scrinzi A. Attosecond streaking measurements. J Mod Opt, 2005, 52:395-410??
[21]  32 Kosik E M, Corner L, Wyatt A S, et al. Complete characterization of attosecond pulses. J Mod Opt, 2005, 52:361-378??
[22]  33 Nisoli M, Sansoni G. New frontiers in attosecond science. Prog Quant Electr, 2009, 33:17-59??
[23]  34 Lewenstein M, Balcou P, Ivanov M Y, et al. Theory of high-harmonic generation by low-frequency laser fields. Phys Rev A, 1994, 49:2117-2132??
[24]  2 Hentschel M, Kienberger R, Spielmann Ch, et al. Attosecond metrology. Nature, 2001, 414:509-513??
[25]  6 Sansone G, Benedetti E, Calegari F, et al. Isolated single-cycle attosecond pulses. Science, 2006, 314:443-446??
[26]  8 Schnürer M, Spielmann Ch, Wobrauschek P, et al. Coherent 0.5-keV X-ray emission from helium driven by a sub-10-fs laser. Phys Rev Lett, 1998, 80:3236-3239
[27]  12 Schiessl K, Ishikawa K L, Persson E, et al. Quantum path interference in the wavelength dependence of high-harmonic generation. Phys Rev Lett, 2007, 99:253903??
[28]  17 Sekikawa T, Ohno T, Yamazaki T, et al. Pulse compression of a high-order harmonic by compensating the atomic dipole phase. Phys Rev Lett, 1999, 83:2564-2567??
[29]  21 Quéré F, Mairesse Y, Itatani J. Temporal characterization of attosecond XUV fields. J Mod Opt, 2005, 52:339-360??
[30]  22 Mauritsson J, Johnsson P, López-Martens R, et al. Probing temporal aspects of high-order harmonic pulses via multi-colour, multi-photon ionization processes. J Phys B, 2005, 38:2265-2278??
[31]  23 Bandrauk A D, Chelkowski S, Shon N H. Measuring the electric field of few-cycle laser pulses by attosecond cross correlation. Phys Rev Lett, 2002, 89:2839031
[32]  26 Scrinzi A, Geissler M, Brabec T. Attosecond cross correlation technique. Phys Rev Lett, 2001, 86:412-415??
[33]  29 Scrinzi A, Ivanov M Yu, Kienberger R, et al. Attosecond physics. J Phys B:At Mol Opt Phys, 2006, 39:R1-R37??
[34]  30 Cavalieri A L, Müller N, Uphues Th, et al. Attosecond spectroscopy in condensed matter. Nature, 2007, 449:1029-1032??
[35]  35 Milosevic D B, Ehlotzky F. Coulomb and rescattering effects in above-threshold ionization. Phys Rev A, 1998, 58:3124-3125??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133