1 Carninci P, Kasukawa T, Hayashizaki Y, et al. The transcriptional landscape of the mammalian genome. Science, 2005, 309:1559-1563??
[2]
2 Kapranov P, Willingham A T, Gingeras T R. Genome-wide transcription and the implications for genomic organization. Nat Rev Genet,2007, 8:413-423
[3]
3 Calin G A, Dumitru C D, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA, 2002, 99:15524-15529??
[4]
5 Kawasaki H, Taira K. MicroRNA-196 inhibits HOXB8 expression in myeloid differentiation of HL60 cells. Nucleic Acids Symp Ser, 2004,48:211-212??
[5]
6 Eulalio A, Huntzinger E, Nishihara T. Deadenylation is a widespread effect of miRNA regulation. RNA, 2009, 15:21-32
[6]
7 Calin G A, Sevignani C. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA, 2004, 101:2999-3004??
[7]
10 Eis P S, Tam W. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA, 2005, 102:3627-3632??
[8]
12 Calin G A, Croce C M. MicroRNA signatures in human cancers. Nat Rev Cancer, 2006, 6:857-866??
[9]
15 Krützfeldt J, Rajewsky N. Silencing of microRNAs in vivo with ‘antagomirs'. Nature, 2005, 438:685-689??
[10]
18 Bertone P, Stolc V, Royce T E. Global identification of human transcribed sequences with genome tiling arrays. Science, 2004, 24:2242-2246
[11]
20 Brown C J, Ballabio A. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature, 1991, 349:38-44??
[12]
22 Brunkow M E, Tilghman S M. Ectopic expression of the H19 gene in mice causes prenatal lethality. Genes Dev, 1991, 5:1092-1101??
[13]
26 Moulton T, Crenshaw T. Epigenetic lesions at the H19 locus in Wilms'patients. Nat Genet, 1994, 7:440-447??
[14]
39 Banet G, Bibi O. Characterization of human and mouse H19 regulatory sequences. Mol Biol Rep, 2000, 27:157-165??
[15]
40 Rinn J L, Kertesz M. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 2007,129:1311-1323??
[16]
41 Gupta R A, Shah N. Long noncoding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 2010, 464:1071-1076??
[17]
42 Tsai M C, Manor O, Wan Y, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science, 2010, 6:689-693
[18]
43 Tan J, Yang X, Zhuang L, et al. Pharmacologic disruption of polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev, 2007, 21:1050-1063??
[19]
45 Bejerano G. Ultraconserved elements in the human genome. Science, 2004, 304:1321-1325??
[20]
46 Bejerano G. Into the heart of darkness:Large-scale clustering of human noncoding DNA. Bioinformatics, 2004, 20:i40-i48??
[21]
48 Scaruffi P, Stigliani S, Moretti S, et al. Transcribed-ultra conserved region expression is associated with outcome in high-risk neuroblastoma. BMC Cancer, 2009, 9:441??
[22]
50 Capaccioli S, Quattrone A, Schiavone N, et al. A bcl-2/IgH antisense transcript deregulates bcl-2 gene expression in human follicular lymphoma t(14;18) cell lines. Oncogene, 1996, 13:105-115
[23]
51 Yamamoto T, Manome Y, Nakamura M, et al. Downregulation of survivin expression by induction of the effector cell protease receptor-1 reduces tumor growth potential and results in an increased sensitivity to anticancer agents in human colon cancer. Eur J Cancer, 2002, 38:2316-2324??
[24]
55 Morris K V. Bidirectional transcription directs both transcriptional gene activation and suppression in human cells. PLoS Genet, 2008, 4:e1000258??
[25]
56 Mahmoudi S. Wrap53, a natural p53 antisense transcript required for p53 induction upon DNA damage. Mol Cell, 2009; 33:462-471
[26]
57 Sleutels F, Zwart R, Barlow D P. The noncoding Air RNA is required for silencing autosomal imprinted genes. Nature, 2002, 415:810-813??
[27]
58 Zwart R, Sleutels F, Wutz A, et al. Bidirectional action of the Igf2r imprint control element on upstream and downstream imprinted genes. Genes Dev, 2001, 15:2361-2366??
[28]
59 Lyle R, Watanabe D, te Vruchte D, et al. The imprinted antisense RNA at the Igf2r locus overlaps but does not imprint Mas1. Nat Genet,2000, 25:19-21??
[29]
60 Winter A G, Sourvinos G, Allison S J, et al. RNA polymerase III transcription TFIIIC2 is overexpressed in ovarian tumours. Proc Natl Acad Sci USA, 2000, 97:12619-12624??
[30]
62 Pavon-Eternod M, Gomes S, Geslain R, et al. tRNA over-expression in breast cancer and functional consequences. Nucleic Acids Res,2009, 37:7268-7280??
[31]
64 Marshall L, Kenneth N S, White R J. Elevated tRNAi Met synthesis can drive cell proliferation and oncogenic transformation. Cell, 2008,133:78-89??
[32]
65 Mei Y, Yong J, Liu H, et al. tRNA binds to cytochrome c and inhibits caspase activation. Mol Cell, 2010, 37:668-678??
[33]
67 Fernández-Silva P, Enriquez J A, Montoya J. Replication and transcription of mammalian mitochondrial DNA. Exp Physiol, 2003, 88:41-56??
[34]
68 Clayton D A. Replication and transcription of vertebrate mitochondrial DNA. Annu Rev Cell Biol, 1991, 7:453-478??
[35]
73 Villegas J, Burzio V, Villota C, et al. Expression of a novel noncoding mitochondrial RNA in human proliferating cells. Nucleic Acids Res, 2007, 35:7336-7347??
[36]
77 Gee H E, Buffa F M, Camps C, et al. The small-nucleolar RNAs commonly used for microRNA normalisation correlate with tumour pathology and prognosis. Br J Cancer, 2011, 104:1168-1177??
[37]
4 Friedman R C, Farh K K, Burge C B, et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res, 2009, 19:92-105
[38]
8 Sevignani C, Calin G A. MicroRNA genes are frequently located near mouse cancer susceptibility loci. Proc Natl Acad Sci USA, 2007,104:8017-8022??
[39]
9 Johnson S M, Grosshans H. RAS is regulated by the let-7 microRNA family. Cell, 2005, 120:635-647??
[40]
11 Ota A, Tagawa H, Karnan S, et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res, 2004, 64:3087-3095
[41]
13 Lee Y S, Dutta A. MicroRNAs in cancer. Annu Rev Pathol Mech Dis, 2009, 4:199-227??
[42]
14 Ryan B M, Robles A I, Harris C C. Genetic variation in microRNA networks:The implications for cancer research. Nat Rev Cancer, 2010,10:389-402??
[43]
16 Ryan B M, Robles A I, Harris C C. Genetic variation in microRNA networks:The implications for cancer research. Nat Rev Cancer, 2010,10:389-402??
[44]
17 Kwak P B, Iwasaki S, Tomari Y. The microRNA pathway and cancer. Cancer Sci, 2010, 101:2309-2315??
[45]
19 Brannan C I, Dees E C. The product of the H19 gene may function as an RNA. Mol Cell Biol, 1990, 10:28-36
[46]
21 Willingham A T, Orth A P. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science, 2005, 309:1570-1573??
[47]
23 Barsyte-Lovejoy D, Lau S K, Boutros P C. The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis. Cancer Res, 2006, 66:5330-5337??
[48]
24 Hao Y, Crenshaw T. Tumour-suppressor activity of H19 RNA. Nature, 1993, 365:764-767??
[49]
25 Steenman J C, Rainier S. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms'tumour. Nat Genet, 1994, 7:433-439??
[50]
27 Matouk I J, DeGroot N. The H19 noncoding RNA is essential for human tumor growth. PLoS ONE, 2007, 2:e845??
[51]
28 Scott R E, Gao S. De-differentiation-derived mesenchymal stem cells demonstrate selective repression in H19 bioregulatory RNA gene expression. Differentiation, 2005, 73:294-302
[52]
29 Ayesh S, Matouk I. Possible physiological role of H19 RNA. Mol Carcinog, 2002, 35:63-74??
[53]
30 Yang J, Mani S A. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 2004, 117:927-939??
[54]
31 Berteaux N, Lottin S. H19 mRNA-like noncoding RNA promotes breast cancer cell proliferation through positive control by E2F1. J Biol Chem, 2005, 280:29625-29636??
[55]
32 Cai X Z, Cullen B R. The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA, 2007, 13:313-316??
[56]
33 Leighton P A, Saam J R. An enhancer deletion affects both H19 and Igf2 expression. Genes Dev, 1995, 9:2079-2089??
[57]
34 Ekstrom T J, Cui H. Promoter-specific IGF2 imprinting status and its plasticity during human liver development. Development, 1995, 121:309-316
[58]
35 DeBaun M R, Niemitz E L. Epigenetic alterations of H19 and LIT1 distinguish patients with Beckwith-Wiedemann syndrome with cancer and birth defects. Am J Hum Genet, 2002, 70:604-611??
[59]
36 Wilkin F, Paquette J. H19 sense and antisense transgenes modify insulin-like growth factor-II mRNA levels. Eur J Biochem, 2000, 267:4020-4027??
[60]
37 Li Y M, Franklin G. The H19 transcript is associated with polysomes and may regulate IGF2 expression intrans. J Biol Chem, 1998, 273:28247-28252??
[61]
38 Toillon R A, Descamps S, Adriaenssens E. Hepatocyte growth factor enhances CXCR4 expression favoring breast cancer cell invasiveness. Exp Cell Res, 2005, 310:176-185??
[62]
44 Huarte M, Guttman M, Feldser D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell, 2010, 142:409-419??
[63]
47 Calin G A, Liu C G, Ferracin M, et al. Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell, 2007, 12:215-229??
[64]
49 Katayama S, Tomaru Y. Antisense transcription in the mammalian transcriptome. Science, 2005, 309:1564-1566??
[65]
52 Cui I, Cui H. Antisense RNAs and epigenetic regulation. Epigenomics, 2010, 2:139-150??
[66]
53 Faghihi M A. Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol, 2009, 10:637-643??
[67]
54 Yu W, Gius D, Onyango P, et al. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature, 2008, 451:202-206??
[68]
61 Daly N L, Arvanitis D A, Fairley J A, et al. Deregulation of RNA polymerase III transcription in cervical epithelium in response to high-risk human papillomavirus. Oncogene, 2005, 24:880-888??
[69]
63 Frye M, Watt F M. The RNA methyltransferase Misu (NSun2) mediates myc-induced proliferation and is upregulated in tumors. Curr Biol,2006, 16:971-981??
[70]
66 Anderson S, Bankier A T, Barrell B G, et al. Sequence and organization of the human mitochondrial genome. Nature, 1981, 290:457-465??
[71]
69 Lu J, Sharma L K, Bai Y. Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis. Cell Res, 2009,19:802-815??
[72]
70 Lisa M. Impact of disease-related mitochondrial mutations on tRNA structure and function. Trends Biochem Sci, 2003, 28:605-611??
[73]
71 Villegas J, Zárraga A M, Muller I, et al. A novel chimeric mitochondrial RNA localized in the nucleus of mouse sperm. DNA Cell Biol,2000, 19:579-588??
[74]
72 Villegas J, Müller I, Arredondo J, et al. A putative RNA editing from U to C in a mouse mitochondrial transcript. Nucleic Acids Res, 2002,30:1895-1901??
[75]
74 Burzio V A, Villota C, Villegas J, et al. Expression of a family of noncoding mitochondrial RNAs distinguishes normal from cancer cells. Proc Natl Acad Sci USA, 2009, 106:9430-9434??
[76]
75 Castelnuovo M, Massone S, Tasso R, et al. An Alu-like RNA promotes cell differentiation and reduces malignancy of human neuroblastoma cells. FASEB J, 2010, 24:4033-4046??
[77]
76 Christov C P, Trivier E, Krude T. Noncoding human Y RNAs are overexpressed in tumours and required for cell proliferation. Br J Cancer,2008, 98:981-988??