全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

藏北中中新世淡色花岗岩及流纹岩的成因:对高原北部边界地壳加厚过程和隆升时代的制约

DOI: 10.1360/csb2012-57-2-3-153, PP. 153-168

Keywords: 可可西里,锆石U-Pb,定年,40Ar/39Ar,定年,淡色花岗岩,流纹岩,地壳加厚,高原隆升

Full-Text   Cite this paper   Add to My Lib

Abstract:

淡色花岗岩的研究对了解大陆碰撞造山带地壳增厚过程、陆壳深熔作用甚至高原隆升具有重要意义.野外调查表明,可可西里湖地区发育中中新世二云母淡色花岗岩和流纹岩.针对布喀达坂二云母淡色花岗岩和科考湖、马兰山、湖东梁流纹岩进行了锆石U-Pb、白云母和透长石40Ar/39Ar定年以及全岩地球化学分析.结果表明,布喀达坂淡色花岗岩的锆石U-Pb结晶年龄为9.7±0.2Ma,白云母40Ar/39Ar冷却年龄为6.88±0.19Ma.科考湖和马兰山流纹岩喷发年龄分别为14.5±0.8和9.37±0.30Ma.所有岩石富SiO2(70.99%~73.59%),Al2O3(14.39%~15.25%)和K2O(3.78%~5.50%),而贫Fe2O3(0.58%~1.56%),MgO(0.11%~0.44%)和CaO(0.59%~1.19%),属于强过铝质岩石(A/CNK=1.11~1.21),稀土元素呈现明显的负Eu异常(δEu=0.18~0.39),具有高87Sr/86Sri(0.7124~0.7143)和低εNd(9Ma)(-5.5~-7.1)的特征.可可西里湖地区中中新世二云母淡色花岗岩和流纹岩一致具有典型的S-型花岗岩特征.其岩石成因机制可能为昆仑左行走滑断裂的活动引发断裂末端局部地区东西向伸展减压,导致增厚的中下地壳变泥质岩石白云母脱水部分熔融,形成可可西里湖地区壳源岩浆岩.可可西里湖地区淡色花岗岩的侵位或流纹岩的喷出表明,在15Ma之前,藏北地壳大规模的缩短加厚作用就已经完成.同时,暗示藏北至少在15Ma可能就已经达到或接近现今的海拔高度(~5000m).

References

[1]  3 Le Fort P, Cuney M, Deniel C, et al. Crustal generation of the Himalayan leucogranites. Tectonophysics, 1987, 134:39-57??
[2]  4 Harris N, Inger S. Trace element modeling of pelite-derived granites. Contrib Mineral Petrol, 1992, 110:46-56??
[3]  6 Guillot S, Le Fort P. Geochemical constraint on the bimodal origin of High Himalayan leucogranite. Lithos, 1995, 35:221-234??
[4]  11 Lee J, Whitehouse M J. Onset of mid-crustal extensional flow in southern Tibet:Evidence from U/Pb zircon ages. Geology, 2007, 35:45-48??
[5]  16 Zeng L S, Gao L E, Xie K J, et al. Mid-Eocene high Sr/Y granites in the Northern Himalayan gneiss domes:melting thickened lower continental crust. Earth Planet Sci Lett, 2011, 303:251-266??
[6]  17 Pinet C, Jaupart C. A thermal model for the distribution in space and time of the Himalayan granites. Earth Planet Sci Lett, 1987, 84:87-99??
[7]  18 Harrison T M, Lovera O M, Grove M. New insights into the origin of two contrasting Himalayan granite belts. Geology, 1997, 25:899-902??
[8]  19 Harris N, Massey J. Decompression and anatexis of Himalayan metapelites. Tectonics, 1994, 13:1537-1546??
[9]  20 Burchfiel B C, Molnar P, Zhao Z, et al. Geology of the Ulugh Muztagh area, Northern Tibet. Earth Planet Sci Lett, 1989, 94:57-70??
[10]  21 McKenna L W, Walker J D. Geochemistry of crustally-derived leucocratic igneous rocks from the Ulugh Muztagh area, Northern Tibet and their implications for the formation of the Tibetan Plateau. J Geophys Res, 1990, 95:21483-21502??
[11]  22 Ding L, Kapp P, Zhong D L, et al. Cenozoic volcanic rocks in Tibet:Evidence for a transition from oceanic to continental subduction. J Petrol, 2003, 44:1833-1865??
[12]  23 Ding L, Kapp P, Yue Y, et al. Postcollisional calc-alkaline lavas and xenoliths from the southern Qiangtang terrane, central Tibet. Earth Planet Sci Lett, 2007, 254:28-38??
[13]  26 邓万明. 青藏高原新生代板内火山岩. 北京:地质出版社, 1998
[14]  28 朱迎堂, 贾全香, 伊海生, 等. 青海可可西里湖地区新生代两期火山岩. 矿物岩石, 2005, 25:23-29
[15]  29 江东辉, 刘嘉麒, 丁林. 青藏高原北部可可西里地区新生代钾质火山岩地球化学特征及成因. 岩石学报, 2008, 24:279-290
[16]  30 郑祥身, 边千韬, 郑健康. 青海可可西里地区新生代火山岩研究. 岩石学报, 1996, 12:530-545
[17]  32 魏启荣, 李德威, 王国灿, 等. 青藏高原北部查保马组火山岩的锆石SHRIMP U-Pb 定年和地球化学特点及其成因意义. 岩石学报,2007, 23:2727-2736
[18]  35 Cooper K M, Reid M R, Dunbar N W, et al. Origin of mafic magmas beneath northwestern Tibet:Constraints from 230Th-238U disequilibria. Geochem Geophys Geosys, 2002, 3, doi:10.1029/2002GC000332
[19]  42 宋彪, 张玉海, 万渝生, 等. 锆石SHRIMP 样品靶制作、年龄测定及有关现象讨论. 地质论评, 2002, 48(增刊):26-30
[20]  43 Composton W, Williams I S, Meyer C. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass resolution ion microprobe. J Geophys Res, 1984, 89:525-534??
[21]  46 Ludwig K R. SQUID ver.:1.02. A user’s Manual. Berkeley Geochronol Center Spec Publ, 2001, 2:1-19
[22]  47 Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostand Newslett, 2004, 28:353-370??
[23]  48 Griffin W L, Powell W J, Pearson N J, et al. GLITTER:Data reduction software for laser ablation ICP-MS. In:Sylvester P, ed. Laser Ablation- ICP-MS in the Earth Sciences:Current Practices and Outstanding Issues:Mineral Assoc Canada Short Course, 2008, 40:308-311
[24]  49 Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb. Chem Geol, 2002, 192:59-79??
[25]  50 Ludwig K. Users Manual for Isoplot/Ex (rev. 2.49):A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Spec Pub, 2001
[26]  53 Dazé A, Lee K W J, Villeneuve M. An intercalibration study of the Fish Canyon sanidine and biotite 40Ar/39Ar standards and some comments on the age of the Fish Canyon Tuff. Chem Geol, 2003, 199:111-127??
[27]  54 Li C F, Chen F K, Li X H. Precise isotopic measurements of sub-nanogram Nd of standard reference material by thermal ionization mass spectrometry using the NdO+ technique. Int J Mass Spectrom, 2007, 266:34-41??
[28]  58 Chappell B W, White A J R. I and S-type granites in the Lachlan Fold Belt. Trans R Soc Edinburgh Earth Sci, 1992, 83:1-26??
[29]  59 Sylvester P J. Post-collisional strongly peraluminous granites. Lithos, 1998, 45:29-44??
[30]  60 Barker F. Trondhjemite:Definition, environment and hypotheses of origin. In:Barker F, ed. Trondhjemites, Dacites, and Related Rocks. Developments in Petrology. Amsterdam:Elsevier, 1979. 1-12
[31]  61 Patiňo Douce A E, Harris N. Experimental constraints on Himalayan anatexis. J Petrol, 1998, 39:689-710??
[32]  62 Le Breton N, Thompson A B. Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contrib Mineral Petrol, 1988, 99:226-237??
[33]  63 Vielzeuf D, Holloway J R. Experimental determination of the fluid-absent melting relations in the pelitic system:Consequence for crustal differentiation. Contrib Mineral Petrol, 1988, 98:257-276??
[34]  65 Ayres M, Harris N. REE fractionation and Nd-isotope disequilibrium during crustal anatexis:Constraints from Himalayan leucogranites. Lithos, 1997, 139:249-269
[35]  67 Brown M. The generation, segregation, ascent and emplacement of granite magma:The migmatite-to-crustally-derived granite connection in thickened orogens. Earth Sci Rev, 1994, 36:83-130??
[36]  71 Amijo R, Tapponnier P, Mercier J L, et al. Quaternary extension in south Tibet:Field observations and tectonic implications. J Geophys Res, 1986, 91:13803-13872??
[37]  79 钟大赉, 丁林. 青藏高原的隆起过程及其机制探讨. 中国科学D 辑:地球科学, 1996, 26:289-295
[38]  80 Spicer R A, Harris N B W, Widdowson M, et al. Constant elevation of southern Tibet over the past 15 Million years. Nature, 2003, 421:622-624??
[39]  81 Rowley D B, Currie B S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 2006, 439:677-681??
[40]  1 Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen. Ann Rev Earth Planet Sci, 2000, 28:211-280??
[41]  2 Ding L, Kapp P, Wan X. Paleocene-Eocene record of ophiolite obduction and initial India-Asian collision, south central Tibet. Tectonics,2005, 24, doi:10.1029/2004TC001729TC3001
[42]  5 Inger S, Harris N. Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya. J Petrol, 1993, 34:345-368
[43]  7 Searle M P, Parrish R R, Hodges K V, et al. Shisha Pangma leucogranite, South Tibetan Himalaya:Field relations, geochemistry, age, origin, and emplacement. J Geol, 1997, 105:295-317??
[44]  8 张宏飞, Harris N, Parrish R, 等. 北喜马拉雅萨迦穹窿中苦堆和萨迦淡色花岗岩的U-Pb 年龄及其地质意义. 科学通报, 2004, 49:2090-2094
[45]  9 张宏飞, Harris N, Parrish R, 等. 北喜马拉雅淡色花岗岩地球化学:区域对比、岩石成因及其构造意义. 地球科学, 2005, 30:275-288
[46]  10 Zhang H, Harris N, Parrish R R, et al. Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform. Earth Planet Sci Lett, 2004, 228:195-212??
[47]  12 Aikman A B, Harrison T M, Ding L. Evidence for early (>44 Ma) Himalayan crustal thickening, Tethyan Himalaya, southeastern Tibet. Earth Planet Sci Lett, 2008, 274:14-23??
[48]  13 戚学祥, 曾令森, 孟祥金, 等. 特提斯喜马拉雅奴拉花岗岩的锆石SHRIMP U-Pb 定年及其地质意义. 岩石学报, 2008, 24:1501-1508
[49]  14 高利娥, 曾令森, 刘静, 等. 藏南也拉香波早渐新世富钠过铝质淡色花岗岩的成因机制及其构造动力学意义. 岩石学报, 2009, 25:2289-2302
[50]  15 曾令森, 刘静, 高利娥, 等. 藏南也拉香波穹隆早渐新世地壳深熔作用及其地质意义. 科学通报, 2009, 54:373-381
[51]  24 Wang Q, Wyman D A, Xu J F, et al. Eocene melting of subducting continental crust and early uplifting of central Tibet:Evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites. Earth Planet Sci Lett, 2008, 272:158-171??
[52]  25 张以茀, 郑健康. 青海可可西里及邻区地质概论. 北京:地震出版社, 1994
[53]  27 邓万明, 郑锡澜, 松本征夫. 青海可可西里地区新生代火山岩的岩石特征与时代. 岩石矿物学杂志, 1996, 15:289-298
[54]  31 杨经绥, 吴才来, 史仁灯, 等. 青藏高原北部鲸鱼湖地区中新世和更新世两期橄榄玄粗质系列火山岩. 岩石学报, 2002, 18:161-176
[55]  33 Arnaud N O, Vidal P, Tapponnier P, et al. The high K2O volcanism of northwestern Tibet:Geochemistry and tectonic implications. Earth Planet Sci Lett, 1992, 111:351-367??
[56]  34 Turner S, Arnaud N, Liu L, et al. Post-collision shoshonitic volcanism on the Tibetan Plateau:Implications for convective thinning of the lithosphere and the source of ocean island basalts. J Petrol, 1996, 37:45-71??
[57]  36 Wang Q, McDermott F, Xu J, et al. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet:Lower-crustal melting in an intracontinental setting. Geology, 2005, 33:465-468??
[58]  37 Guo Z, Wilson M, Liu J, et al. Post-collisional, potassic and ultrapotassic magmatism of the northern Tibetan plateau:Constraints on characteristics of the mantle source, geodynamic setting and uplift mechanisms. J Petrol, 2006, 47:1177-1220??
[59]  38 Yin A, Harrison T M, Ryerson F J. Transtension along the left-slip Altyn Tagh and Kunlun faults as a mechanism for the occurrence of Late Cenozoic volcanism in the northern Tibetan Plateau. Eos Trans AGU, 1995, 567
[60]  39 Jolivet M, Brunel M, Seward D, et al. Neogene extension and volcanism in the Kunlun fault zone, northern Tibet:New constraints on the age of the Kunlun fault. Tectonics, 2003, 22:1052-1074??
[61]  40 Fu B, Awata Y. Displacement and timing of left-lateral faulting in the Kunlun Fault Zone, northern Tibet, inferred from geologic and geomorphic features. J Asian Earth Sci, 2007, 29:253-265??
[62]  41 Black L P. TEMORA 1:A new zircon standard for Phanerozoic U-Pb geochronology. Chem Geol, 2003, 200:155-170??
[63]  44 Williams I S. U-Th-Pb geochronology by ion microprobe. In:Mchinbben M A, Ahanks W C, Ridey W I, eds. Application of Microanalytical Techniques to Understanding Mineralizaing Process. Rev Econ Geol, 1998, 7:1-35
[64]  45 万渝生, 罗照华, 李莉. 3.8 Ma:青藏高原年轻碱性玄武岩锆石离子探针U-Pb 年龄测定. 地球化学, 2004, 33:442-446
[65]  51 Renne P R, Deino A L, Walter R C, et al. Intercalibration of astronomical and radio isotopic time. Geology, 1994, 22:783-786??
[66]  52 Steiger R H, J?ger E. Subcommission on geochronology:Convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett, 1977, 36:359-362??
[67]  55 Boynton W V. Cosmochemistry of the rare earth elements:Meteorite studies. In:Henderson P, ed. Rare Earth Element Geochemistry. Amsterdam:Elsevier, 1984. 63-114
[68]  56 She Z B, Ma C Q, Mason R, et al. Provenance of the Triassic Songpan-Ganzi flysch, west China. Chem Geol, 2006, 231:159-175??
[69]  57 吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题. 岩石学报, 2007, 23:1217-1238
[70]  64 Hacker B R, Gnos E, Ratschbacher L, et al. Hot and dry deep crustal xenoliths from Tibet. Science, 2000, 287:2463-2466??
[71]  66 Zeng L, Asimow P D, Saleeby J B. Coupling of anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematic of anatectic melts from a metasedimentary source. Geochim Cosmochim Acta, 2005, 69:3671-3682??
[72]  68 Blisniuk M P, Hacker R B, Glodny J, et al. Normal faulting in central Tibet since at least 13.5 Myr ago. Nature, 2001, 412:628-632
[73]  69 Williams H M, Turner S, Kelley S, et al. Age and composition of dikes in Southern Tibet:New constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology, 2001, 29:339-342??
[74]  70 Coleman M, Hodges K. Evidence for Tibetan Plateau uplifted before 14 Myr ago from a new minimal age for east-west extension. Nature,1995, 374:49-52??
[75]  72 England P C, Houseman G A. Finite strain calculations of continental deformation. 2. Comparison with the India-Asia collision zone. J Geophys Res, 1986, 91:3664-3676
[76]  73 Tapponnier P, Xu Z, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau. Science, 2001, 294:1671-1677??
[77]  74 Wang C, Liu Z, Yi H, et al. Tertiary crustal shortening and peneplenation in the Hoh Xil region:Implications for the tectonic history of the northern Tibetan Plateau. J Asian Earth Sci, 2002, 20:211-223??
[78]  75 Meyer B, Tapponnier P, Bourjot L, et al. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet Plateau. Geophys J Int, 1998, 135:1-47??
[79]  76 Métivier F, Gaudemer Y, Tapponnier P, et al. Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two depositional areas:The Qaidam and Hexi Corridor basins, China. Tectonics, 1998, 17:823-842??
[80]  77 Wang C S, Zhao X X, Lippert P C, et al. Constraints on the early uplift history of the Tibetan Plateau. Proc Natl Acad Sci USA, 2008, 105:4987-4992??
[81]  78 Chung S L, Lo C H, Lee T Y, et al. Diachronous uplift of the Tibetan Plateau starting 40 Myr ago. Nature, 1998, 394:769-773??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133