全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

岩石风化碳汇研究的最新进展和展望

DOI: 10.1360/972011-1640, PP. 95-102

Keywords: 碳汇,碳酸盐风化,硅酸盐风化,水生光合作用,内源有机碳,碳汇动态

Full-Text   Cite this paper   Add to My Lib

Abstract:

自气候变化的岩石风化控制学说提出至今,学界普遍认为,是硅酸盐的化学风化碳汇作用在控制着长时间尺度的气候变化,而在短时间尺度上硅酸盐风化碳汇与碳酸盐风化碳汇也是旗鼓相当的.然而,最新的研究发现,碳酸盐溶解的快速动力学和硅酸盐岩流域中微量碳酸盐矿物的风化在控制该流域溶解无机碳(DIC)浓度和碳汇上的重要性,使得碳酸盐风化碳汇占整个岩石风化碳汇的94%,而硅酸盐风化仅占6%左右.另一方面,水生光合生物对DIC的利用及其形成的有机质(内源有机碳)的埋藏,使得碳酸盐风化碳汇在任何时间尺度气候变化的控制上可能都是重要的.此外,岩石风化碳汇研究的另一重要进展是发现了碳汇随全球变暖和土地利用变化显著增加,即形成了气候变化的负反馈机制.未来应通过岩石风化碳捕获和储存过程及其控制机理的进一步研究,揭示岩石风化碳汇过程及其气候和土地利用调控潜力,以服务于各国应对气候变化的国家政策制定.重点研究①岩石风化碳汇过程及其物理、化学和生物控制机理;②硅酸盐岩流域中微量碳酸盐矿物的风化在控制流域DIC浓度及其碳汇上的重要性;③陆地水生光合生物利用DIC产生内源有机碳的效率;④气候变化和土地利用调控岩石风化碳汇的潜力.

References

[1]  3 刘再华, Dreybrodt W, 刘洹. 大气CO2 汇: 硅酸盐风化还是碳酸盐风化的贡献? 第四纪研究, 2011, 31: 426–430??
[2]  6 Edmond J M. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science, 1992, 258: 1594–1597??
[3]  8 Blum J D, Gazis C A, Jacobson A D, et al. Carbonate versus silicate weathering in the Raikhot watershed within the High Himalayan Crystalline Series. Geology, 1998, 26: 411–414??
[4]  10 Dreybrodt W. Processes in Karst systems. Heidelberg: Springer, 1988
[5]  11 Kump L R, Brantley S L, Arthur M A. Chemical weathering, atmospheric CO2, and climate. Annu Rev Earth Planet Sci, 2000, 28: 611–667
[6]  12 Liu Z, Dreybrodt W. Dissolution kinetics of calcium carbonate minerals in H2O–CO2 solutions in turbulent flow: The role of the diffusion boundary layer and the slow reaction H2O+CO2?H++HCO3-. Geochim Cosmochim Acta, 1997, 61: 2879–2889??
[7]  13 Amiotte-Suchet P, Probst J L, Ludwig W. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Glob Biogeochem Cycle, 2003, 17: 1038??
[8]  14 Palmer M R, Edmond J M. Controls over the strontium isotope composition of river water. Geochim Cosmochim Acta, 1992, 56: 2099–2111??
[9]  15 Harris N, Bickle M, Chapman H, et al. The significance of Himalayan rivers for silicate weathering rates: Evidence from the Bhote Kosi tributary. Chem Geol, 1998, 144: 205–220??
[10]  17 English N B, Quade J, DeCelles P G, et al. Geologic control of Sr and major element chemistry in Himalayan Rivers, Nepal. Geochim Cosmochim Acta, 2000, 64: 2549–2566??
[11]  18 Oliver L, Harris N, Bickle M, et al. Silicate weathering rates decoupled from the Sr-87/Sr-86 ratio of the dissolved load during Himalayan erosion. Chem Geol, 2003, 201: 119–139??
[12]  19 Quade J, English N, DeCelles P G. Silicate versus carbonate weathering in the Himalaya: A comparison of the Arun and Seti River watersheds. Chem Geol, 2003, 202: 275–296??
[13]  23 Gaillardet J, Dupre B, Louvat P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol, 1999, 159: 3–30??
[14]  24 Jacobson A D, Blum J D, Chamberlain C P, et al. Climatic and tectonic controls on chemical weathering in the New Zealand Southern Alps. Geochim Cosmochim Acta, 2003, 67: 29–46??
[15]  28 Mulholland P J, Elwood J W. The role of lake and reservoir sediments as sinks in the perturbed global carbon-cycle. Tellus, 1982, 34: 490–499??
[16]  31 Cole J J, Prairie Y T, Caraco N F, et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems, 2007, 10: 171–184
[17]  33 Tao F, Liu C, Li S. Source and flux of POC in two subtropical karstic tributaries with contrasting land use practice in the Yangtze River Basin. Appl Geochem, 2009, 24: 2102–2112??
[18]  34 Waterson E J, Canuel E A. Sources of sedimentary organic matter in the Mississippi River and adjacent Gulf of Mexico as revealed by lipid biomarker and δ13CTOC analyses. Org Geochem, 2008, 39: 422–439??
[19]  35 Meybeck M. Riverine transport of atmospheric carbon: Sources, global typology and budget. Water Air Soil Poll, 1993, 70: 443–463??
[20]  37 Raymond P A, Oh N H, Turner R E, et al. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature, 2008, 451: 449–452??
[21]  39 刘再华, 袁道先, 何师意, 等. 地热CO2-水-碳酸盐岩系统的地球化学特征及其CO2 来源. 中国科学D 辑: 地球科学, 2000, 30: 209–214
[22]  44 Gaillardet J, Galy A. Himalaya—Carbon Sink or Source? Science, 2008, 320: 1727–1728
[23]  46 Yokoyama T, Nakai S, Wakita H. Helium and carbon isotopic compositions of hot spring gases in the Tibetan Plateau. J Volcanol Geoth Res, 1999, 88: 99–107??
[24]  48 Goldsmith S T, Carey A E, Johnson B M. Stream geochemistry, chemical weathering and CO2 consumption potential of andesitic terrains, Dominica, Lesser Antilles. Geochim Cosmochim Acta, 2010, 74: 85–103
[25]  49 Gupta H, Chakrapani G J, Selvaraj K, et al. The fluvial geochemistry, contributions of silicate, carbonate and saline–alkaline components to chemical weathering flux and controlling parameters: Narmada River (Deccan Traps), India. Geochim Cosmochim Acta, 2011, 75: 800–824??
[26]  51 Schopka H H, Derry L A, Arcilla C A. Chemical weathering, river geochemistry and atmospheric carbon fluxes from volcanic and ultramafic regions on Luzon Island, the Philippines. Geochim Cosmochim Acta, 2011, 75: 978–1002??
[27]  53 Yoshimura K, Nakao S, Noto M, et al. Geochemical and stable isotope studies on natural water in the Taroko Gorge karst area, Taiwan- chemical weathering of carbonate rocks by deep source CO2 and sulfuric acid. Chem Geol, 2001, 177: 415–430
[28]  56 Lerman A, Wu L L, Mackenzie F T. CO2 and H2SO4 consumption in weathering and material transport to the ocean, and their role in the global carbon balance. Mar Chem, 2007, 106: 326–350??
[29]  60 Semhi K, Amiotte-Suchet P, Clauer N, et al. Impact of nitrogen fertilizers on the natural weathering-erosion processes and fluvial transport in the Garonne basin. Appl Geochem, 2000, 15: 865–878??
[30]  61 Perrin A, Probst A, Probst J. Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments: Implications for weathering CO2 uptake at regional and global scales. Geochim Cosmochim Acta, 2008, 72: 3105–3123??
[31]  62 White A F, Blum A E. Effects of climate on chemical-weathering in watersheds. Geochim Cosmochim Acta, 1995, 59: 1729–1747??
[32]  63 Riebe C S, Kirchner J W, Finkel R C. Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes. Earth Planet Sci Lett, 2004, 224: 547–562??
[33]  64 West A J, Galy A, Bickle M. Tectonic and climatic controls on silicate weathering. Earth Planet Sci Lett, 2005, 235: 211–228??
[34]  65 Tipper E T, Bickle M J, Galy A, et al. The short term climatic sensitivity of carbonate and silicate weathering fluxes: Insight from seasonal variations in river chemistry. Geochim Cosmochim Acta, 2006, 70: 2737–2754??
[35]  69 曾成, 赵敏, 杨睿, 等. 高寒冰雪覆盖型和湿润亚热带型岩溶水系统碳汇强度对比. 气候变化研究进展, 2011, 7: 162–170
[36]  70 Cawley J L, Burruss R C, Holland H D. Chemical weathering in Central Iceland: An analog of Pre-Silurian weathering. Science, 1968, 165: 391–392
[37]  71 Berner R A. Weathering, plants, and the long-term carbon cycle. Geochim Cosmochim Acta, 1992, 56: 3225–3231??
[38]  74 Berner R A. The rise of plants and their effect on weathering and atmospheric CO2. Science, 1997, 276: 544–546??
[39]  77 Raymond P A, Oh N H. Long term changes of chemical weathering products in rivers heavily impacted from acid mine drainage: Insights on the impact of coal mining on regional and global carbon and sulfur budgets. Earth Planet Sci Lett, 2009, 284: 50–56??
[40]  78 Zhao M, Zeng C, Liu Z, et al. Effect of different land use/land cover on karst hydrogeochemistry: A paired catchment study of Chenqi and Dengzhanhe, Puding, Guizhou, SW China. J Hydrol, 2010, 388: 121–130??
[41]  79 Cochran M F, Berner R A. Promotion of chemical weathering by higher plants: Field observations on Hawaiian basalts. Chem Geol, 1996, 132: 71–77??
[42]  1 Berner R A, Lasaga A C, Garrels R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon-dioxide over the past 100 million years. Am J Sci, 1983, 283: 641–683??
[43]  2 刘再华, Dreybrodt W, 王海静. 一种由全球水循环产生的可能重要的CO2 汇. 科学通报, 2007, 52: 2418–2422
[44]  4 Liu Z, Dreybrodt W, Wang H. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms. Earth-Sci Rev, 2010, 99: 162–172??
[45]  5 Liu Z, Dreybrodt W, Liu H. Atmospheric CO2 sink: Silicate weathering or carbonate weathering? Appl Geochem, 2011, 26: 292–294??
[46]  7 Quade J, Roe L, DeCelles G, et al. The late Neogene 87Sr/86Sr record of lowland Himalayan rivers. Science, 1997, 276: 1828–1831??
[47]  9 Plummer L N, Wigley T M L, Parkhurst D L. Kinetics of calcite dissolution in CO2-water systems at 5°C to 60°C and 0.0 to 1.0 atm CO2. Am J Sci, 1978, 278: 179–216
[48]  16 Galy A, France-Lanord C, Derry L A. The strontium isotopic budget of Himalayan Rivers in Nepal and Bangladesh. Geochim Cosmochim Acta, 1999, 63: 1905–1925??
[49]  20 Jacobson A D, Blum J D, Chamberlain C P, et al. Ca/Sr and Sr isotope systematics of a Himalayan glacial chronosequence: Carbonate versus silicate weathering rates as a function of landscape surface age. Geochim Cosmochim Acta, 2002, 66: 13–27??
[50]  21 Jacobson A D, Blum J D, Walter L M. Reconciling the elemental and Sr isotope composition of Himalayan weathering fluxes: Insights from the carbonate geochemistry of stream waters. Geochim Cosmochim Acta, 2002, 66: 3417–3429??
[51]  22 Amiotte-Suchet P, Probst J L. A global model for present-day atmospheric/soil CO2 consumption by chemical erosion of continental rocks GEM-CO2. Tellus, 1995, 47: 273–280??
[52]  25 McConnaughey T A, Whelan J F. Calcification generates protons for nutrient and bicarbonate uptake. Earth-Sci Rev, 1997, 42: 95–117??
[53]  26 Lerman A, Mackenzie T. CO2 air-sea exchange due to calcium carbonate and organic matter storage, and its implications for the global carbon cycle. Aquat Geochem, 2005, 11: 345–390??
[54]  27 Smith S V, Gattuso J. Balancing the oceanic calcium carbonate cycle: Consequences of variable water column Ψ. Aquat Geochem, 2011, 17: 327–337??
[55]  29 Dean W E, Gorham E. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology, 1998, 26: 535–538??
[56]  30 Einsele G, Yan J, Hinderer M. Atmospheric carbon burial in modern lake basins and its significance for the global carbon budget. Glob Planet Change, 2001, 30: 167–195??
[57]  32 陶贞, 高全洲, 姚冠荣. 增江流域河流颗粒有机碳的来源、含量变化及输出通量. 环境科学学报, 2004, 24: 789–795
[58]  36 Liu Z, Zhao J. Contribution of carbonate rock weathering to the atmospheric CO2 sink. Environ Geol, 2000, 39: 1053–1058??
[59]  38 Macpherson G L, Roberts J A, Blair J M. Increasing shallow groundwater CO2 and limestone weathering, Konza Prairie, USA. Geochim Cosmochim Acta, 2008, 72: 5581–5599??
[60]  40 Du J G, Cheng W Z, Zhang Y L, et al. Helium and carbon isotopic compositions of thermal springs in the earthquake zone of Sichuan, Southwestern China. J Asian Earth Sci, 2006, 26: 533–539??
[61]  41 Hren M T, Chamberlain C P, Hilley G E, et al. Major ion chemistry of the Yarlung Tsangpo-Brahmaputra river: Chemical weathering, erosion, and CO2 consumption in the southern Tibetan plateau and eastern syntaxis of the Himalaya. Geochim Cosmochim Acta, 2007, 71: 2907–2935
[62]  42 Becker J A, Bickle M J, Galy A, et al. Himalayan metamorphic CO2 fluxes: Quantitative constraints from hydrothermal springs. Earth Planet Sci Lett, 2008, 265: 616–629??
[63]  43 Kerrick D M, McKibben M A, Seward T M, et al. Convective hydrothermal CO2 emission from high heat flow regions. Chem Geol, 1995, 121: 285–293??
[64]  45 Hurwitz S, Evans W C, Lowenstern J B. River solute fluxes reflecting active hydrothermal chemical weathering of the Yellowstone Plateau Volcanic Field, USA. Chem Geol, 2010, 276: 331–343??
[65]  47 Dessert C, Dupre B, Gaillardet J, et al. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chem Geol, 2003, 202: 257–273??
[66]  50 Moquet J S, Crave A, Viers J, et al. Chemical weathering and atmospheric/soil CO2 uptake in the Andean and Foreland Amazon basins. Chem Geol, 2011, 287: 1–26??
[67]  52 Amiotte-Suchet P, Probst A, Probst J L. Influence of acid rain on CO2 consumption by rock weathering: Local and global scales. Water Air Soil Poll, 1995, 85: 1563–1568??
[68]  54 Spence J, Telmer K. The role of sulfur in chemical weathering and atmospheric CO2 fluxes: Evidence from major ions, delta C-13(DIC), and delta S-34(SO4) in rivers of the Canadian Cordillera. Geochim Cosmochim Acta, 2005, 69: 5441–5458
[69]  55 Lerman A, Wu L. CO2 and sulfuric acid controls of weathering and river water composition. J Geochem Explor, 2006, 88: 427–430??
[70]  57 Li S L, Calmels D, Han G, et al. Sulfuric acid as an agent of carbonate weathering constrained by delta C-13(DIC): Examples from Southwest China. Earth Planet Sci Lett, 2008, 270: 189–199??
[71]  58 Meyer H, Strauss H, Hetzel R. The role of supergene sulphuric acid during weathering in small river catchments in low mountain ranges of Central Europe: Implications for calculating the atmospheric CO2 budget. Chem Geol, 2009, 268: 41–51??
[72]  59 Xu Z, Liu C. Water geochemistry of the Xijiang basin rivers, South China: Chemical weathering and CO2 consumption. Appl Geochem, 2010, 25: 1603–1614
[73]  66 Cai W J, Guo X H, Chen C T A, et al. A comparative overview of weathering intensity and HCO3? flux in the world’s major rivers with emphasis on the Changjiang, Huanghe, Zhujiang (Pearl) and Mississippi Rivers. Cont Shelf Res, 2008, 28: 1538–1549??
[74]  67 Gislason S R, Oelkers E H, Eiriksdottir E S, et al. Direct evidence of the feedback between climate and weathering. Earth Planet Sci Lett, 2009, 277: 213–222??
[75]  68 Hagedorn B, Cartwright I. Climatic and lithologic controls on the temporal and spatial variability of CO2 consumption via chemical weathering: An example from the Australian Victorian Alps. Chem Geol, 2009, 260: 234–253??
[76]  72 Drever J I. The effect of land plants on weathering rates of silicate minerals. Geochim Cosmochim Acta, 1994, 58: 2325–2332??
[77]  73 Gislason S R, Arnorsson S, Armannsson H. Chemical weathering of basalt in southwest Iceland: Effects of runoff, age of rocks and vegetative/ glacial cover. Am J Sci, 1996, 296: 837–907??
[78]  75 Andrews J A, Schlesinger W H. Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment. Glob Biogeochem Cycle, 2001, 15: 149–162
[79]  76 Barnes R T, Raymond P A. The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds. Chem Geol, 2009, 266: 318–327??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133