1 Kroopnick P M. The distribution of 13C of SCO2 in the world oceans. Deep-Sea Res, 1985, 32: 57-84
[2]
2 Duplessy J C, Shackleton N J, Matthews R K, et al. 13C record of benthic foraminifera in the last interglacial ocean: Implications for the carbon cycle and the global deep water circulation. Quat Res, 1984, 21: 225-243
[3]
3 Curry W B, Duplessy J C, Labeyrie L D, et al. Changes in the distribution of δ13C of deep water SCO2 between the last glaciations and the Holocene. Paleoceanography, 1988, 3: 317-341
[4]
4 Sarnthein M, Winn K, Jung S J A, et al. Changes in east Atlantic deep water circulation over the last 30000 years: Eight time slice reconstructions. Paleoceanography, 1994, 9: 209-267
[5]
5 Keigwin L D. Glacial-age hydrography of the far northwest Pacific Ocean. Paleoceanography, 1998, 13: 323-339
[6]
11 Dickens G R, James R O, Rea D K, et al. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography, 1995, 10: 965-971
[7]
12 Kennett J P, Cannariato K G, Hendy I L, et al. Carbon isotopic evidence for methane hydrate instability during quaternary interstadials. Science, 2000, 288: 128-133
16 Hill T M, Paull C K, Crister R B. Glacial and deglacial seafloor methane emissions from pockmarks on the northern flank of the Storegga Slide complex. Geol-Mar Lett, 2012, doi: 10.1007/s00367-011-0258-7
[10]
17 Nürnberg D, Tiedemann R. Environmental change in the Sea of Okhotsk during the last 1.1 million years. Paleoceanography, 2004, 19: PA4011, doi: 10.1029/2004PA001023
19 Gladyshev S, Talley L, Kantakov G, et al. Distribution, formation, and seasonal variability of Okhotsk Sea Mode Water. J Geophys Res, 2003, 108: 3186, doi: 10.1029/2001JC000877
[13]
20 Wong C S, Matear R J, Freeland H J, et al. WOCE line P1W in the Sea of Okhotsk: 2. CFCs and the formation rate of intermediate water. J Geophys Res, 1998, 103: 15625-15642
[14]
28 Okazaki Y, Takahashi K, Nakatsuka T, et al. The production scheme of Cycladophora davisiana (Radiolaria) in the Okhotsk Sea and the northwestern North Pacific: Implication for the paleoceanographic conditions during the glacials in the high latitude oceans. Geophys Res Lett, 2003, 30: 1939, doi: 10.1029/2003GL018070
[15]
29 Abelmann A, Nimmergut A. Radiolarians in the Sea of Okhotsk and their ecological implication for paleoenvironmental reconstructions. Deep-Sea Res, 2005, 52: 2302-2331
[16]
30 Itaki T, Khim B K, Ikehara K. Last glacial-Holocene water structure in the southwestern Okhotsk Sea inferred from radiolarian assemblages. Mar Micropaleontol, 2008, 67: 191-215
[17]
32 Sakamoto T, Ikehara M, Aoki K, et al. Ice-rafted debris (IRD)-based sea-ice expansion events during the past 100 kyrs in the Okhotsk Sea. Deep-Sea Res II, 2005, 52: 2275-2301
[18]
33 Ge H, Zhang C L, Dang H, et al. Distribution of tetraether lipids in surface sediments of the northern South China Sea: Implications for TEX86 proxies. Geosci Front, 2013, 4: 223-229
[19]
38 Duplessy J C, Shackleton N J, Fairbanks R G, et al. Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography, 1988, 3: 343-360
[20]
39 Hill T M, Kennett J P, Valentine D L. Isotopic evidence for the incorporation of methane-derived carbon into foraminifera from modern methane seeps, Hydrate Ridge, Northeast Pacific. Geochim Cosmochim Acta, 2004, 68: 4619-4627
[21]
40 Cook M S, Keigwin L D, Birgel D, et al. Repeated pulses of vertical methane flux recorded in glacial sediments from the southeast Bering Sea. Paleoceanography, 2011, 26: PA2210, doi: 10.1029/2010PA001993
[22]
41 Cannariato K G, Stott L D. Evidence against clathrate-derived methane release to Santa Barbara Basin surface waters? Geochem Geophys Geosyst, 2004, 5: Q05007, doi: 10.1029/2003GC000600
[23]
43 Pancost R D, Hopmans E C, Sinnighe D J S, et al. Archaeal lipids in Mediterranean cold seeps: Molecular proxies for anaerobic methane oxidation. Geochim Cosmochim Acta, 2001, 65: 1611-1627
[24]
44 Blumenberg M, Seifert R, Reitner J, et al. Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proc Natl Acad Sci USA, 2004, 101: 11111-11116
[25]
45 Mackensen A, Hubberten H W, Bickert T, et al. The δ13C in benthic foraminiferal tests of Fontbotia wuellerstorfi (Schwager) relative to the δ13C of dissolved inorganic carbon in Southern Ocean Deep Water: Implications for glacial ocean circulation models. Paleoceanography, 1993, 8: 587-610
[26]
46 Mackensen A, Bickert T. Stable carbon isotopes in benthic foraminifera: Proxy for deep and bottom water circulation and new production. In: Fischer G, Wefer G, eds. Use of Proxies in Paleoceanography: Examples from the South Atlantic. Berlin: Springer-Verlag, 1999. 229-254
[27]
47 Zarriess M, Mackensen A. Testing the impact of seasonal phytodetritus deposition on δ13C of epibenthic foraminifer Cibicidoides wuellerstorfi: A 31000 year high-resolution record from the northwest African continental slope. Paleoceanography, 2011, 26: PA2202, doi: 10.1029/2010PA001944
[28]
51 李铁刚, 刘振夏, Hall M A, 等. 冲绳海槽末次冰消期浮游有孔虫δ13C的宽幅低值事件. 科学通报, 2002, 27: 298-301
[29]
57 Cannariato K G, Kennett J P. Climatically related millennial-scale fluctuations in strength of California margin oxygen-minimum zone during the past 60 ky. Geology, 1999, 27: 975-978
[30]
58 McKay J L, Pedersen T F, Southon J. Intensification of the oxygen minimum zone in the northeast Pacific off Vancouver Island during the last deglaciation: Ventilation and/or export production? Paleoceanography, 2005, 20: PA4002, doi: 10.1029/2003PA000979
[31]
6 Curry W B, Oppo D W. Glacial water mass geometry and the distribution of δ13C of SCO2 in the western Atlantic Ocean. Paleoceanography, 2005, 20: PA1017, doi: 10.1029/2004PA001021
[32]
7 Grossman E L. Stable isotope fractionation in live benthic foraminifera from the Southern California Borderland. Palaeogeogr Palaeoclimatol Palaeoecol, 1984, 47: 301-327
[33]
8 Berelson W M, Stott L D. Productivity and organic carbon rain to the California margin seafloor: Modern and paleoceanographic perspectives. Paleoceanography, 2003, 18: 1002, doi: 10.1029/2001PA000672
[34]
9 Zahn R, Winn K, Sarnthein M. Benthic foraminiferal δ13C and accumulation rates of organic carbon: Uvigerina peregrine group and Cibicidoides wuellerstorfi. Paleoceanography, 1986, 1: 27-42
[35]
10 Shackleton N J. Carbon-13 in Uvigerina: Tropical rainforest history and the equatorial Pacific carbonate dissolution cycles. In: Andersen N R, Malahoff A, eds. The Fate of Fossil Fuel CO2 in the Oceans. New York: Plenum Publish Corporation, 1977. 401-427
[36]
13 Katz M E, Cramer B S, Mountain G S, et al. Uncorking the bottle: What triggered the Paleocene/Eocene thermal maximum methane release? Paleoceanography, 2001, 16: 549-562
[37]
14 Millo C, Sarnthein M, Erlenkeuser H, et al. Methane-driven late Pleistocene δ13C minima and overflow reversals in the southwestern Greenland Sea. Geology, 2005, 30: 873-876
[38]
21 Talley L D. An Okhotsk Sea water anomaly: Implication for ventilation in the North Pacific. Deep-Sea Res, 1991, 38: 171-190
[39]
22 Freeland H J, Bychkov A S, Whitney F, et al. WOCE section P1W in the Sea of Okhotsk: 1. Oceanographic data description. J Geophys Res, 1998, 103: 15613-15623
[40]
23 You Y, Suginohara N, Fukasawa M, et al. Roles of the Okhotsk Sea and Gulf of Alaska in forming the North Pacific intermediate water. J Geophys Res, 2000, 105: 3253-3280
[41]
24 Itaki T, Ikehara K. Middle to late Holocene changes of the Okhotsk Sea intermediate water and their relation to atmospheric circulation. Geophys Res Lett, 2004, 31: L24309, doi: 10.1029/2004GL021384
[42]
25 Okazaki Y, Seki O, Nakatsuka T, et al. Cycladophora davisiana (Radiolaria) in the Okhotsk Sea: A key for reconstructing glacial ocean conditions. J Oceanogr, 2006, 62: 639-648
31 Broerse A T C, Ziveri P, Honjo S. Coccolithophore (-CaCO3) flux in the Sea of Okhotsk: Seasonality, settling and alteration processes. Mar Micropaleontol, 2000, 39: 179-200
[46]
34 Fairbanks R G, Mortlock R A, Chiu T C, et al. Radiocarbon calibration curve spanning 0 to 50000 years BP based on paired 230Th/234U/ 238U and 14C dates on pristine corals. Quat Sci Rev, 2005, 24: 1781-1796
[47]
35 Martinson D G, Pisias N G, Hays J D, et al. Age dating and the orbital theory of the ice ages: Development of a high-resolution 0 to 300000-year chronostratigraphy. Quat Res, 1987, 27: 1-29
[48]
36 Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 2005, 20: PA1003, doi: 10.1029/2004PA001071
[49]
37 Zhang Y G, Zhang C L, Liu X L, et al. Methane index: A tetraether archaeal lipid biomarker indicator for detecting the instability of marine gas hydrates. Earth Planet Sci Lett, 2011, 307: 525-534
49 Bubenshchikova N, Nürnberg D, Lembke-Jene L, et al. Living benthic foraminifera of the Okhotsk Sea: Faunal composition, standing stocks and microhabitats. Mar Micropaleontol, 2008, 69: 314-333
[53]
50 Gorbarenko S A, Southon J R, Keigwin L D. Late Pleistocene-Holocene oceanographic variability in the Okhotsk Sea: Geochemical, lithological and paleontological evidence. Palaeogeogr Palaeoclimatol Palaeoecol, 2004, 209: 281-301
[54]
52 Kitani K. An oceanographic study of the Okhotsk Sea: Particularly in regard to cold waters. Bull Far Seas Fish Res Lab, 1973, 9: 45-77
[55]
53 Salyuk A, Sosnin V, Obzhirov A, et al. Water column studies. In: Biebow N, Kulinich R, Baranov B, eds. Cruise Reports: RV “Akademik M. A. Lavrentyev” Cruise 29, GEOMAR Reports 110, 2003. 110-112
[56]
54 Bubenshchikova N V, Nürnberg D, Gorbarenko S A, et al. Variations of the oxygen minimum zone of the Okhotsk Sea during the last 50 ka as indicated by benthic foraminiferal and biogeochemical data. Oceanology, 2010, 50: 93-106
[57]
55 Shibahara A, Ohkushi K, Kennett J P, et al. Late Quaternary changes in intermediate water oxygenation and oxygen minimum zone, northern Japan: A benthic foraminiferal perspective. Paleoceanography, 2007, 22: PA3213, doi: 10.1029/2005PA001234
[58]
56 Cannariato K G, Kennett J P, Behl R J. Biotic response to late Quaternary rapid climate switches in Santa Barbara Basin: Ecological and evolutionary implications. Geology, 1999, 27: 63-66