全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

碳循环对气候变化历史责任归因的影响

DOI: 10.1360/csb2014-59-15-1459, PP. 1459-1467

Keywords: 气候变化,固碳,历史责任,地球系统模式

Full-Text   Cite this paper   Add to My Lib

Abstract:

全球碳循环是气候变化的根本问题,其长期演变决定了人类导致的气候变化的速度和程度,也决定了稳定大气CO2浓度的减缓政策的制定和减排技术的施行.本研究利用2个参与了第5次耦合模式比较计划的耦合了碳循环过程的地球系统模式CESM和BNU-ESM,模拟研究了工业革命以来碳循环对气候变化历史责任归因的影响.模拟结果表明,以大气CO2浓度的升高为衡量指标,相比通常研究中以累积排放量为指标,发达国家碳排放的历史责任减小了6%~10%,发展中国家增大了6%~10%.这是由于历史时期(1850~2005年)发达国家占主导的工业碳排放对这一时期海洋和陆地固碳量的增加贡献了61%~68%和61%~64%,而发展中国家贡献了32%~39%和36%~39%.因此发达国家排放情景下,相对较大的全球碳汇固碳量减小了发达国家碳排放的历史责任,但也由于海洋吸收了更多的碳,使得发达国家对全球海洋的酸化负主要责任(68%).而且发达国家的高排放降低了全球碳汇的固碳效率,可能影响未来长期的固碳量,加剧全球增暖的程度.因此未来在制定减排方案时,需要进一步考虑到碳循环过程对减排方案的响应和影响.

References

[1]  1 Forster P, Ramaswamy V, Artaxo P, et al. Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, et al., eds. Climate Change 2007: The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York: Cambridge University Press, 2007. 134-140
[2]  2 Intergovernmental Panel on Climate Change. Summary for Policymakers. In: Stocker T F, Qin D, Plattner G K, et al., eds. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the inTergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York: Cambridge University Press, 2013. 9-16
[3]  3 Keeling R F, Piper S C, Heimann M. Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature, 1996, 381: 218-221
[4]  4 Meinshausen M, Meinshausen N, Hare W, et al. Greenhouse-gas emission targets for limiting global warming to 2℃. Nature, 2009, 458: 1158-1162
[5]  11 丁仲礼, 段晓楠, 葛全胜, 等. 2050年大气CO2浓度控制: 各国排放权计算. 中国科学D辑: 地球科学, 2009, 39: 1009-1027
[6]  14 den Elzen M, Schaeffer M. Responsibility for past and future global warming: Uncertainties in attributing anthropogenic climate change. Clim Change, 2002, 54: 29-73
[7]  16 Prather M J, Penner J E, Fuglestvedt J S, et al. Tracking uncertainties in the causal chain from human activities to climate. Geophys Res Lett, 2009, 36, doi: 10.1029/2008GL036474
[8]  17 H?hne N, Blum H, Fuglestvedt J, et al. Contributions of individual countries' emissions to climate change and their uncertainty. Clim Change, 2011, 106: 359-391
[9]  19 H?hne N, Blok K. Calculating historical contributions to climate chang: Discussing the ‘Brazilian proposal'. Clim Change, 2005, 71: 141-173
[10]  20 Wei T, Yang S L, Moore J C, et al. Developed and developing world responsibilities for historical climate change and CO2 mitigation. Proc Natl Acad Sci USA, 2012, 109: 12911-12915
[11]  21 Le Quéré C, Raupach M R, Canadell J G, et al. Trends in the sources and sinks of carbon dioxide. Nat Geosci, 2009, 2: 831-836
[12]  22 Frank D C, Esper J, Raible C C, et al. Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature, 2010, 463: 527-530
[13]  25 Doney S C, Lindasy K, Fung I, et al. Natural variability in a stable, 1000-yr global coupled climate-carbon cycle simulation. J Clim, 2006, 19: 3033-3054
[14]  26 Gent P R, Danabasoglu G, Donner L J, et al. The community climate system model version 4. Bull Am Meteorol Soc, 2011, 24: 4973-4991
[15]  27 Ji D Y, Wang L N, Feng J M, et al. Description and basic evalution of BNU-ESM version 1. Geosci Model Dev Discuss, 2004, 7: 1601-1647
[16]  29 燕青, 张仲石, 王会军, 等. 上新世中期格陵兰冰盖模拟. 科学通报, 2014, 59: 80-89
[17]  30 Le Quéré C, Peters G P, Andres R J, et al. Global carbon budget 2013. Earth Syst Sci Data Discuss, 2013, doi: 10.5194/essdd-6-689-2013
[18]  31 Andres R J, Gregg J S, Losey L, et al. Monthly, global emissions of carbon dioxide from fossil fuel consumption. Tellus Ser B, 2011, 63: 309-327
[19]  37 Thompson S L, Govindasamy B, Mirin A, et al. Quantifying the effects of CO2-fertilized vegetation on future global climate and carbon dynamics. Geophys Res Lett, 2004, 31, doi: 10.1029/2004GL021239
[20]  38 Peters G P, Minx J C, Weber C L, et al. Growth in emission transfers via international trade from 1990 to 2008. Proc Natl Acad Sci USA, 2011, 108: 8903-8908
[21]  39 Kaplan J O, Krumhardt K M, Zimmermann N. The prehistoric and preindustrial deforestation of Europe. Quat Sci Rev, 2009, 28: 3016-3034
[22]  40 Crossette B, Kollodge R, Froseth R, et al. State of World Population. 2011
[23]  5 United Nations Framework Convention on Climate Change. Compilation of economy-wide emission reduction targets to be implemented by Parties included in Annex I to the Convention. Conference Report. Cancun, 2010
[24]  6 Hedenus F, Azar C. Estimates of trends in global income and resource inequalities. Ecol Econ, 2005, 55: 351-364
[25]  7 Groot L. Carbon Lorenz curves. Resour Energy Econ, 2010, 32: 45-64
[26]  8 滕飞, 何建坤, 潘勋章, 等. 碳公平的测度: 基于人均历史累计排放的碳基尼系数. 气候变化研究进展, 2010, 6: 449-455
[27]  9 Baumert K A, Herzog T, Pershing J. Navigating the numbers: Greenhouse gases and international climate change agreements. World Resources Institute, 2005
[28]  10 何建坤, 陈文颖, 滕飞, 等. 全球长期减排目标与碳排放权分配原则. 气候变化研究进展, 2009, 5: 362-368
[29]  12 Fung I Y, Donry S C, Lindsay K, et al. Evolution of carbon sinks in a changing climate. Proc Natl Acad Sci USA, 2005, 102: 11201-11206
[30]  13 United Nations Framework Convention on Climate Change. Brazil: Proposed Elements of a Protocol to the United Nations Framework Convention on Climate Change. Conference Report. Bonn, 1997
[31]  15 H?hne N, Blok K. Calculating historical contributions to climate change—Discussing the ‘Brazilian Proposal'. Clim Change, 2005, 71: 141-173
[32]  18 den Elzen M, Fuglestvedt J, H?hne N, et al. Analysing countries' contribution to climate change: Scientific and policy-related choices. Environ Sci Policy, 2005, 8: 614-636
[33]  23 Thornton P E, Rosenbloom N A. Ecosystem model spin-up: Estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model. Ecol Model, 2005, 189: 25-48
[34]  24 Thomas H, Prowe A E, Lima D, et al. Changes in the North Atlantic Oscillation influence CO2 uptake in the North Atlantic over the past 2 decades. Glob Biogeochem Cycle, 2008, 224, doi: 10.1029/2007GB003167
[35]  28 Yan Q, Wang H J, Johannessen O M, et al. Greenland ice sheet contribution to future global sea level rise based on CMIP5 models. Adv Atmos Sci, 2014, 31: 8-16
[36]  32 Keppel-Aleks G, Randerson J T, Lindsay K, et al. Atmospheric carbon dioxide variability in the Community Earth System Model: Evaluation and transient dynamic during the 20th and 21st centuries. J Clim, 2013, 26: 4447-4475
[37]  33 Sabine C L, Feely R A, Gruber N, et al. The oceanic sink for anthropogenic CO2. Science, 2004, 305: 367-371
[38]  34 高志球, 刘纪远. 中国植被净生产力的比较研究. 科学通报, 2008, 53: 317-326
[39]  35 Peng J, Dong W J, Yuan W P, et al. Effects of increased CO2 on land water balance from 1850 to 1989. Theor Appl Climatol, 2013, 111: 483-495
[40]  36 Farquhar G D, Caemmerer S V, Berry J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C-3 species. Planta, 1980, 149: 78-90

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133