全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

青藏高原东北缘白银矿田表生黄钾铁矾40Ar/39Ar年代学和氢-氧同位素地球化学的初步研究及其古气候意义

DOI: 10.1360/csb2014-59-15-1437, PP. 1437-1445

Keywords: 黄钾铁矾,40Ar/39Ar年代学,H-O同位素,干旱-半干旱气候,祁连山

Full-Text   Cite this paper   Add to My Lib

Abstract:

黄钾铁矾是干旱-半干旱地区硫化物矿床风化壳中常见的表生矿物.对表生黄钾铁矾进行精确的40Ar/39Ar定年和H-O同位素组成分析,不仅可以直接限定大陆化学风化和硫化物矿床次生富集的时间和历史,而且可为区域古气候演变和构造隆升等重大地质事件提供关键信息.本文对青藏高原东北缘祁连山地区白银矿田折腰山块状硫化物矿床风化壳中表生黄钾铁矾进行了40Ar/39Ar年代学和H-O同位素地球化学的初步研究,为祁连山地区新生代古气候条件的分析提供新的资料和思路方法.折腰山矿床的表生黄钾铁矾主要有两种产状一种是赋存于风化壳顶部坡积物中的块状黄钾铁矾,另一种是风化壳中切割容矿岩石的脉状黄钾铁矾.块状黄钾铁矾具有板状晶形,K2O含量为8.21wt%~8.31wt%,两个样品的40Ar/39Ar年龄分别为41.2±0.4和37.1±0.3Ma,对应的δD值分别为-156‰和-133‰,δ18OSO4值为2.5‰和2.6‰.脉状黄钾铁矾具有六方双锥状晶形,K2O含量为2.44wt%~2.72wt%,两个样品的40Ar/39Ar年龄分别为3.3±0.1和3.2±0.1Ma,对应的δD值为-160‰和-158‰,δ18OSO4值是2.5‰和2.8‰.黄钾铁矾的40Ar/39Ar年龄和H-O同位素组成特征表明,白银矿田折腰山矿床至少在始新世中期就已隆升到地表并接受了长期的化学风化和矿床的次生富集,其中晚始新世和晚上新世的2次风化事件记录了白银地区干旱-半干旱气候条件下2次相对湿润的气候,且晚上新世比晚始新世的温度低.对祁连山地区硫化物矿床风化壳年代学和稳定同位素地球化学的进一步系统研究有可能为祁连山和青藏高原东北缘新生代以来的构造隆升、气候变化和矿床次生富集等重要地质事件提供制约.

References

[1]  1 Stoffregen R E, Alpers C N, Jambor J L. Alunite-jarosite crystallography, thermodynamics, and geochronology. Rev Mineral Geochem, 2000, 40: 453-479
[2]  2 Vasconcelos P M, Brimhall G H, Becker T A, et al. 40Ar/39Ar analysis of supergene jarosite and alunite: Implications to the paleoweathering history of the western USA and west Africa. Geochim Cosmochim Acta, 1994, 58: 401-420
[3]  3 Vasconcelos P M, Conroy M. Geochronology of weathering and landscape evolution, Dugald River valley, NW Queensland, Australia. Geochim Cosmochim Acta, 2003, 67: 2913-2930
[4]  5 Alpers C N, Brimhall G H. Paleohydrologic evolution and geochemical dynamics of cumulative supergene metal enrichment at La Escondida, Atacama Desert, northern Chile. Econ Geol, 1989, 84: 229-255
[5]  6 Arehart G B, O'Neil J R. D/H ratios of supergene alunite as an indicator of paleoclimate in continental settings. In: Swart P K, Lohmann K C, Mckenzie J, et al., eds. Climate Change in Continental Isotopic Records. Washington DC: American Geophysical Union, 1993. 277-284
[6]  7 Hou Z Q, Zaw K, Rona P, et al. Geology, fluid inclusions, and oxygen isotope geochemistry of the Baiyinchang pipe-style volcanic-hosted massive sulfide Cu deposit in Gansu Province, northwestern China. Econ Geol, 2008, 103: 269-292
[7]  8 李锡林. 西北干旱地区多金属矿床氧化带研究. 地质科学, 1960, 1: 14-24
[8]  9 李锡林. 祁连山硫化矿床中黄钾铁矾的初步研究. 地质科学, 1959, 2: 26-28
[9]  13 Fleck R J, Sutter J F, Elliot D H. Interpretation of discordant 40Ar/39Ar age-spectra of Mesozoic tholeiites from Antarctica. Geochim Cosmochim Acta, 1977, 41: 15-32
[10]  14 Kuiper K F, Deino A, Hilgen F J, et al. Synchronizing rock clocks of Earth history. Science, 2008, 320: 500-504
[11]  15 Wasserman M D, Rye R O, Bethke P M, et al. Methods for Separation and Total Stable Isotope Analysis of Alunite. US Geological Survey, Open-File Report 92-9, 1992
[12]  16 Lee J Y, Marti K, Severinghaus J P, et al. A redetermination of the isotopic abundances of atmospheric Ar. Geochim Cosmochim Acta, 2006, 70: 4507-4512
[13]  17 Rye R O, Alpers C N. The Stable Isotope Geochemistry of Jarosite. US Geological Survey, Open-File Report 88-97, 1997
[14]  18 Seal R R, Alpers C N, Rye R O. Stable isotope systematics of sulfate minerals. Rev Mineral Geochem, 2000, 40: 541-602
[15]  26 Dansgaard W. Stable isotopes in precipitation. Tellus, 1964, 16: 436-468
[16]  29 Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 2001, 292: 686-693
[17]  30 Bird M I, Andrew A S, Chivas A R, et al. An isotopic study of surficial alunite in Australia.1. Hydrogen and sulfur isotopes. Geochim Cosmochim Acta, 1989, 53: 3223-3237
[18]  32 刘东生, 郑绵平, 郭正堂. 亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性. 第四纪研究, 1998, 3: 194-204
[19]  34 Rea D K, Snoeckx H, Joseph L H. Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern Hemisphere. Paleoceanography, 1998, 13: 215-224
[20]  4 Vasconcelos P M. K-Ar and 40Ar/39Ar Geochronology of weathering processes. Annu Rev Earth Planet Sci, 1999, 27: 183-229
[21]  10 涂光炽, 李锡林. 干旱和极端干旱气候条件下硫化物矿床氧化带发育特征(以西北五个矿床为例说明). 地质学报, 1963, 43: 361-377
[22]  11 甘肃省地质调查院. 1:25万区域地质调查报告(兰州幅). 2004
[23]  12 甘肃省地质局. 1:5万区域地质调查报告(脑泉幅、白银幅). 1978
[24]  19 Mote T I, Becker T A, Renne P, et al. Chronology of exotic mineralization at El Salvador, Chile, by 40Ar/39Ar dating of copper wad and supergene alunite. Econ Geol, 2001, 96: 351-366
[25]  20 Bouzari F, Clark A H. Anatomy, evolution, and metallogenic significance of the supergene orebody of the Cerro Colorado porphyry copper deposit, I Region, northern Chile. Econ Geol, 2002, 97: 1701-1740
[26]  21 Quang C X, Clark A H, Lee J K W, et al. 40Ar/39Ar ages of hypogene and supergene mineralization in the Cerro Verde-Santa Rosa porphyry Cu-Mo cluster, Arequipa, Peru. Econ Geol, 2003, 98: 1683-1696
[27]  22 Quang C X, Clark A H, Lee J K W, et al. Response of supergene processes to episodic Cenozoic uplift, pediment erosion, and ignimbrite eruption in the porphyry copper province of southern Peru. Econ Geol, 2005, 100: 87-114
[28]  23 Arancibia G, Matthews S J, de Arce C P. K-Ar and 40Ar/39Ar Geochronology of supergene processes in the Atacama Desert, northern Chile: Tectonic and climatic relations. J Geol Soc, 2006, 163: 107-118
[29]  24 Bissig T, Riquelme R. Andean uplift and climate evolution in the southern Atacama Desert deduced from geomorphology and supergene alunite-group minerals. Earth Planet Sci Lett, 2010, 299: 447-457
[30]  25 李智佩, 彭礼贵, 任有祥, 等. 白银厂火山碎屑岩岩石学与古海相火山作用. 岩石学报, 2000, 16: 183-190
[31]  27 Pang Z H, Kong Y L, Froehlich K, et al. Processes affecting isotopes in precipitation of an arid region. Tellus B, 2011, 63: 352-359
[32]  28 Rye R O, Bethke P M, Wasserman M D. The stable isotope geochemistry of acid sulfate alteration. Econ Geol, 1992, 87: 225-262
[33]  31 Sillitoe R H. Supergene oxidized and enriched porphyry copper and related deposits. In: Hedenquist J W, Thompson J F H, Goldfarb R J, et al., eds. Economic Geology 100th Anniversary Volume. 2005. 723-768
[34]  33 Sun X J, Wang P X. How old is the Asian monsoon system?—Palaeobotanical records from China. Palaeogeogr Palaeoclimatol Palaeoecol, 2005, 222: 181-222
[35]  35 Rea D K, Leinen M, Janecek T R. Geologic approach to the long-term history of atmospheric circulation. Science, 1985, 227: 721-725
[36]  36 Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 2002, 416: 159-163

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133