1 Stoffregen R E, Alpers C N, Jambor J L. Alunite-jarosite crystallography, thermodynamics, and geochronology. Rev Mineral Geochem, 2000, 40: 453-479
[2]
2 Vasconcelos P M, Brimhall G H, Becker T A, et al. 40Ar/39Ar analysis of supergene jarosite and alunite: Implications to the paleoweathering history of the western USA and west Africa. Geochim Cosmochim Acta, 1994, 58: 401-420
[3]
3 Vasconcelos P M, Conroy M. Geochronology of weathering and landscape evolution, Dugald River valley, NW Queensland, Australia. Geochim Cosmochim Acta, 2003, 67: 2913-2930
[4]
5 Alpers C N, Brimhall G H. Paleohydrologic evolution and geochemical dynamics of cumulative supergene metal enrichment at La Escondida, Atacama Desert, northern Chile. Econ Geol, 1989, 84: 229-255
[5]
6 Arehart G B, O'Neil J R. D/H ratios of supergene alunite as an indicator of paleoclimate in continental settings. In: Swart P K, Lohmann K C, Mckenzie J, et al., eds. Climate Change in Continental Isotopic Records. Washington DC: American Geophysical Union, 1993. 277-284
[6]
7 Hou Z Q, Zaw K, Rona P, et al. Geology, fluid inclusions, and oxygen isotope geochemistry of the Baiyinchang pipe-style volcanic-hosted massive sulfide Cu deposit in Gansu Province, northwestern China. Econ Geol, 2008, 103: 269-292
[7]
8 李锡林. 西北干旱地区多金属矿床氧化带研究. 地质科学, 1960, 1: 14-24
[8]
9 李锡林. 祁连山硫化矿床中黄钾铁矾的初步研究. 地质科学, 1959, 2: 26-28
[9]
13 Fleck R J, Sutter J F, Elliot D H. Interpretation of discordant 40Ar/39Ar age-spectra of Mesozoic tholeiites from Antarctica. Geochim Cosmochim Acta, 1977, 41: 15-32
[10]
14 Kuiper K F, Deino A, Hilgen F J, et al. Synchronizing rock clocks of Earth history. Science, 2008, 320: 500-504
[11]
15 Wasserman M D, Rye R O, Bethke P M, et al. Methods for Separation and Total Stable Isotope Analysis of Alunite. US Geological Survey, Open-File Report 92-9, 1992
[12]
16 Lee J Y, Marti K, Severinghaus J P, et al. A redetermination of the isotopic abundances of atmospheric Ar. Geochim Cosmochim Acta, 2006, 70: 4507-4512
[13]
17 Rye R O, Alpers C N. The Stable Isotope Geochemistry of Jarosite. US Geological Survey, Open-File Report 88-97, 1997
[14]
18 Seal R R, Alpers C N, Rye R O. Stable isotope systematics of sulfate minerals. Rev Mineral Geochem, 2000, 40: 541-602
[15]
26 Dansgaard W. Stable isotopes in precipitation. Tellus, 1964, 16: 436-468
[16]
29 Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 2001, 292: 686-693
[17]
30 Bird M I, Andrew A S, Chivas A R, et al. An isotopic study of surficial alunite in Australia.1. Hydrogen and sulfur isotopes. Geochim Cosmochim Acta, 1989, 53: 3223-3237
34 Rea D K, Snoeckx H, Joseph L H. Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern Hemisphere. Paleoceanography, 1998, 13: 215-224
[20]
4 Vasconcelos P M. K-Ar and 40Ar/39Ar Geochronology of weathering processes. Annu Rev Earth Planet Sci, 1999, 27: 183-229
19 Mote T I, Becker T A, Renne P, et al. Chronology of exotic mineralization at El Salvador, Chile, by 40Ar/39Ar dating of copper wad and supergene alunite. Econ Geol, 2001, 96: 351-366
[25]
20 Bouzari F, Clark A H. Anatomy, evolution, and metallogenic significance of the supergene orebody of the Cerro Colorado porphyry copper deposit, I Region, northern Chile. Econ Geol, 2002, 97: 1701-1740
[26]
21 Quang C X, Clark A H, Lee J K W, et al. 40Ar/39Ar ages of hypogene and supergene mineralization in the Cerro Verde-Santa Rosa porphyry Cu-Mo cluster, Arequipa, Peru. Econ Geol, 2003, 98: 1683-1696
[27]
22 Quang C X, Clark A H, Lee J K W, et al. Response of supergene processes to episodic Cenozoic uplift, pediment erosion, and ignimbrite eruption in the porphyry copper province of southern Peru. Econ Geol, 2005, 100: 87-114
[28]
23 Arancibia G, Matthews S J, de Arce C P. K-Ar and 40Ar/39Ar Geochronology of supergene processes in the Atacama Desert, northern Chile: Tectonic and climatic relations. J Geol Soc, 2006, 163: 107-118
[29]
24 Bissig T, Riquelme R. Andean uplift and climate evolution in the southern Atacama Desert deduced from geomorphology and supergene alunite-group minerals. Earth Planet Sci Lett, 2010, 299: 447-457
27 Pang Z H, Kong Y L, Froehlich K, et al. Processes affecting isotopes in precipitation of an arid region. Tellus B, 2011, 63: 352-359
[32]
28 Rye R O, Bethke P M, Wasserman M D. The stable isotope geochemistry of acid sulfate alteration. Econ Geol, 1992, 87: 225-262
[33]
31 Sillitoe R H. Supergene oxidized and enriched porphyry copper and related deposits. In: Hedenquist J W, Thompson J F H, Goldfarb R J, et al., eds. Economic Geology 100th Anniversary Volume. 2005. 723-768
[34]
33 Sun X J, Wang P X. How old is the Asian monsoon system?—Palaeobotanical records from China. Palaeogeogr Palaeoclimatol Palaeoecol, 2005, 222: 181-222
[35]
35 Rea D K, Leinen M, Janecek T R. Geologic approach to the long-term history of atmospheric circulation. Science, 1985, 227: 721-725
[36]
36 Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 2002, 416: 159-163